
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

DESIGN, IMPLEMENTATION, AND TESTING OF A VLSI
HIGH PERFORMANCE ASIC FOR EXTRACTING THE

PHASE OF A COMPLEX SIGNAL

by

Ronald Christopher Altmeyer

September 2002

 Thesis Advisor: Douglas J. Fouts
 Co-Advisor: Phillip E. Pace

Approved for public release; distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including
the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and
completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington
headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2002

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE: Design, Implementation, and Testing of a VLSI High
Performance ASIC For Extracting the Phase of a Complex Signal

6. AUTHOR(S) R. Chris Altmeyer

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Center for Joint Services Electronic Warfare
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
Code 313
Arlington, VA

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis documents the research, circuit design, and simulation testing of a VLSI ASIC which extracts phase angle

information from a complex sampled signal using the arctangent relationship: φ = tan-1(Q/I). Specifically, the circuit will

convert the In-Phase and Quadrature terms into their corresponding phase angle. The design specifications were to implement

the design in CMOS technology with a minimum transistor count and ability to operate at a clock frequency of 700 MHz.

Research on the arctangent function was performed to determine mathematical calculation methods and the CORDIC method

was chosen to achieve the stated design specifications. MATLAB simulations were used to calculate and verify accuracy and

to implement Quine-McClusky logic minimization. T-SPICE netlists were generated and simulations were run to determine

transistor and circuit electrical operation and timing. Finally, overall circuit logic functionality of all possible input

combinations was completed using a VHDL simulation program.

15. NUMBER OF
PAGES

130

14. SUBJECT TERMS Digital Image Synthesizer, DIS, VLSI, ASIC, CMOS, Inverse Tangent,
arctangent, arc tangent, atan, atan2, Coordinate Rotation Digital Computer, CORDIC, Amplitude to
Phase Conversion, In-phase, Quadrature, Quine-McClusky, VHDL, Tanner, MOSIS.

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

 i

THIS PAGE INTENTIONALLY LEFT BLANK

 ii

Approved for public release; distribution is unlimited

DESIGN, IMPLEMENTATION, AND TESTING OF AN ASIC VLSI HIGH
PERFORMANCE ARCTANGENT FUNCTION

Ronald Christopher Altmeyer
Captain, Canadian Army

B.Sc., Royal Roads Military College, 1993

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2002

Author: R. Chris Altmeyer

Approved by: Douglas J. Fouts,

Thesis Advisor

Phillip E. Pace,
Co-Advisor

John P. Powers,
Chairman, Department of Electrical and Computer Engineering

 iii

THIS PAGE INTENTIONALLY LEFT BLANK

 iv

ABSTRACT

This thesis documents the research, circuit design, and simulation testing of a

VLSI ASIC which extracts phase angle information from a complex sampled signal using

the arctangent relationship: φ = tan-1(Q/I). Specifically, the circuit will convert the In-

Phase and Quadrature terms into their corresponding phase angle. The design

specifications were to implement the design in CMOS technology with a minimum

transistor count and ability to operate at a clock frequency of 700 MHz. Research on the

arctangent function was performed to determine mathematical calculation methods and

the CORDIC method was chosen to achieve the stated design specifications. MATLAB

simulations were used to calculate and verify accuracy and to implement Quine-

McClusky logic minimization. T-SPICE netlists were generated and simulations were

run to determine transistor and circuit electrical operation and timing. Finally, overall

circuit logic functionality of all possible input combinations was completed using a

VHDL simulation program.

 v

THIS PAGE INTENTIONALLY LEFT BLANK

 vi

TABLE OF CONTENTS

I. INTRODUCTION..1
A. BACKGROUND OF THE DIGITAL IMAGE SYNTHESIZER1
B. PRINCIPAL CONTRIBUTIONS ..5
C. ORGANIZATION OF THESIS ...7

II. INVESTIGATION OF CONVERSION METHODS...9
A. TASKS ..9

1. Aim ..9
2. Implied Tasks ...9

B. GENERAL..9
1. The Arctangent Function of a Real Number.....................................9
2. The Arctangent Function of a Complex Number11
3. Five-Bit Phase Quantization ...12

C. AMPLITUDE-TO-PHASE CONVERSION METHODS..........................13
1. Calculus...15
2. Polynomial Approximation...15
3. Look Up Table..16
4. Sum-of-Products Logic Block ...20
5. CORDIC ...21

D. CORDIC HARDWARE IMPEMENTATION..29

III. SCHEMATIC DESIGN OF THE Q/I PHASE CONVERTER.............................33
A. HIERARCHICAL SCHEMATIC DESIGN OVERVIEW........................33
B. TRANSISTORS ...33

1. N-FET..33
2. P-FET..34
3. N/P-FET Current and Voltage – Drain to Source35

C. LOGIC GATES..37
1. Inverter ...37
2. Pass Gates ...43
3. Buffer ..44
4. XOR...45
5. NAND2..46

D. SECONDARY SUB-CIRCUITS ..48
1. Registers..48
2. RCA_PSVCHAIN..50
3. RCA_13927Buffer..51
4. 16-Bit Pipelined Adder/Subtractor ..52

E. NUMBER FORMATS...55
F. CORDIC ROTATION LEVEL..57

1. Overview ...57
2. Rotation Circuit Diagram ...57
3. Constant Phase Loading..59
4. Negative 128 Fix Circuit..60

 vii

5. Two’s Complement Circuit...60
G. CORDIC GENERAL VECTOR LEVEL..61

1. Overview ...61
2. Schematic ..62
3. Example: CORDIC Vector Level 14.03 ...64

H. 9-BIT TO 5-BIT NUMBER CONVERSION ..67
1. Overview ...67
2. Schematics ..72

I. COMPLETED CIRCUIT ...75
1. Completed Circuit..75
2. Circuit Verification and Parameters..77
3. Verification ...79

IV. CONCLUSIONS AND RECOMMENDATIONS...83
A. GENERAL..83
B. LESSONS LEARNED...83
C. RECOMMENDATIONS FOR FUTURE WORK......................................84

APPENDIX A. MATLAB CODE ...85
A. OVERVIEW...85
B. QUINE-MCCLUSKY MINIMIZATION..85

1. File – Main.m..85
C. OTHER CODES ..86

1. File – NoiseMargins.m...86
2. File – Arctangent.m ...86
3. File – Polynomial_Approx.m ..88

APPENDIX B. MOSIS TSMC 0.18 MICRON FET PARAMETERS [14].............91
A. PROCESS PARAMETERS FILE – TSMC018EPI.MD............................91

APPENDIX C. 9-TO-5 BIT CONVERSION – MINTERM CALCULATION......93
A. OVERVIEW...93

APPENDIX D. PROCESS TECHNOLOGY...101
A. OVERVIEW...101
B. MOSIS PROCESSES ..101

1. Overview ...101
2. SCMOS Design Rules ..102
3. Standard SCMOS ..102
4. Well Type..102

APPENDIX E. TANNER TOOLS DESCRIPTION ...105
A. OVERVIEW...105
B. TANNER TOOLS..105

1. Simulation Tools ..105
2. Frontend and Netlist ..105
3. Mask-Level Tools ...105

LIST OF REFERENCES..107

 viii

INITIAL DISTRIBUTION LIST ...109

 ix

THIS PAGE INTENTIONALLY LEFT BLANK

 x

LIST OF FIGURES

Figure 1. USS Crockett (From [1]). ..2
Figure 2. AN/APS-137 ISAR image of the USS Crockett (From [1])..............................2
Figure 3. Block Diagram of the False Target Radar Image Synthesizer System

(After [2])...3
Figure 4. Plot of the Arctangent Function...10
Figure 5. Complex Plane Showing Example Angle Measurement.11
Figure 6. First Quadrant Arctangent of a Complex Number...12
Figure 7. 8 x 8 Combinational Multiplier (From [6])..14
Figure 8. 15th Order Polynomial Approximation to atan(x). ...16
Figure 9. Arctangent(Q/I) – Floating Point Precision. ..17
Figure 10. Arctangent(Q/I) – Floating Point Precision, Quantized to 32 Values.17
Figure 11. Example: Q = 5, and I = 5, Phase Angle is 135°. ...18 −
Figure 12. Fourth Quadrant Five-bit Arctangent LUT..19
Figure 13. CORDIC Example: z0 = −8 + 4j. ...25
Figure 14. CORDIC Arctangent(Q/I)..28
Figure 15. CORDIC Arctangent(Q/I) Quantized to 32 Values. ..28
Figure 16. Bit Parallel Iterative CORDIC (From [9]). ..29
Figure 17. Bit Serial Iterative CORDIC (From [9]). ...30
Figure 18. Bit Parallel Unrolled CORDIC [After 9]. ..31
Figure 19. N-FET. ...34
Figure 20. P-FET...34
Figure 21. N-FET IDS vs. VDS. ...35
Figure 22. P-FET IDS vs. VDS. ..36
Figure 23. Inverter Symbol (top left) and Schematic (right)...37
Figure 24. βN /βP Ratios and Inverter Noise Margins..39
Figure 25. Inverter Proper Operation. ...41
Figure 26. Inverter TF and TPDHL. ..41
Figure 27. Inverter TR and TPDLH. ..42
Figure 28. Inverter Current Draw..42
Figure 29. Pass Gate Symbol (top left) and Schematic (right)..43
Figure 30. Buffer Symbol (top left) and Schematic (right)...44
Figure 31. XOR Symbol (top left) and Schematic (right)...46
Figure 32. NAND2 Symbol (top left) and Schematic (right)..47
Figure 33. Register Schematic (From [12])...49
Figure 34. Register Control Logic (From [12])...50
Figure 35. One-bit DMSFF Register Symbol. ..50
Figure 36. 16 Clock Period Delay – Phase Signal Valid Circuit.51
Figure 37. Buffer Driver Circuit..52
Figure 38. 16-bit Pipelined Adder/Subtractor. ..54
Figure 39. Rotation Level Symbol (left) and Circuit (Right)..58
Figure 40. ±90° Phase Loading. ..59
Figure 41. Negative 128 Circuit Fix..60
Figure 42. Two’s Complement Circuit..61

 xi

Figure 43. CORDIC General Vector Level Schematic. ..63
Figure 44. CORDIC Level 14.03 Symbol (left) and Circuit (right)..................................64
Figure 45. Zoomed In Phase Input – Phase Loading of 14.03125°.65
Figure 46. Zoomed in Q Hardwire Shifts..66
Figure 47. Zoomed in I Hardwire Shifts. ..67
Figure 48. RCA_9to5_Conversion Circuit..72
Figure 49. R0 Function Hardware Implementation...74
Figure 50. Completed Circuit..76
Figure 51. Power Supply Current Draw..78
Figure 52. Clock and Load Skew. ...78
Figure 53. VHDL Functional Verification. ...80
Figure 54. T-SPICE Timing Verification..81

 xii

LIST OF TABLES

Table 1. Output Number in Decimal vs. Phase in Degrees..13
Table 2. Multiplying Complex Numbers. ..22
Table 3. Rotating by ±90°. ...22
Table 4. Add/subtract phases less than 90°..23
Table 5. CORDIC Vectoring Flow (After [8]). ...23
Table 6. Detailed Calculation Flow of CORDIC Example (After [8]).27
Table 7. Detailed Hardware Flow of a six-iteration CORDIC Implementation.32
Table 8. N/P-FET Operating Point Data..35
Table 9. Inverter Noise Margins. ...40
Table 10. Inverter Electrical Parameters..40
Table 11. Pass Gate Electrical Characteristics...44
Table 12. Buffer Noise Margins. ...44
Table 13. Buffer Electrical Characteristics. ...45
Table 14. XOR Truth Table. ..45
Table 15. XOR Electrical Characteristics. ...46
Table 16. NAND2 Truth Table. ...47
Table 17. NAND2 Noise Margins. ..48
Table 18. NAND2 Electrical Characteristics. ..48
Table 19. DMSFF1 Characteristics..49
Table 20. Register Operation. ..51
Table 21. XOR Truth Table. ..53
Table 22. CORDIC Iteration Number Format. ..55
Table 23. 16-Bit Number Format...56
Table 24. Q7 Programming of ±90°...57
Table 25. Phase Groupings. ...68
Table 26. Minterms Necessary to Generate the 9-to-5 Conversion Circuit.....................68
Table 27. Quine-McClusky Results of 9-to-5 Bit Logic Minimization...........................70
Table 28. Circuit Parameters..77
Table 29. 9-to-5 Bit Phase Conversion Truth Table. ...100

 xiii

THIS PAGE INTENTIONALLY LEFT BLANK

 xiv

ACKNOWLEDGMENTS

The author would like to extend his utmost thanks to Associate Professor Douglas

J. Fouts and Professor Phillip E. Pace. To Professor Fouts, for all his assistance, support,

and patience during the completion of this thesis. For willingly offering assistance at all

hours, for outstanding digital design advice provided, for acting as a sounding board, and

for being the best thesis advisor a Naval Postgraduate School student could have. To

Professor Pace, for providing a study carol, outstanding computer equipment, more RAM

when requested, and for encouragement on the research of this thesis. Without both of

your willing assistance, this thesis would not have been completed within the same time

frame, and certainly would have been an inferior design.

Finally, I would also like to express my heartfelt thoughts to my Mother, Father,

Sister and Grandparents for their support, understanding, and love throughout my life.

Although they have been many miles away, they were always in my heart, where they

will stay forever.

 xv

THIS PAGE INTENTIONALLY LEFT BLANK

 xvi

EXECUTIVE SUMMARY

This thesis documents the research, circuit design, and testing of a Very Large

Scale Integration (VLSI) Application Specific Integrated Circuit (ASIC) which extracts

the phase information from a complex signal via the arctangent function. The purpose of

this chip design is for inclusion and use in a Digital Image Synthesizer (DIS) electronic

warfare chip which generates false target radar images to counter wide band imaging

Inverse Synthetic Aperture Radars (ISAR). Specifically, the circuit will convert the In-

phase and Quadrature terms, comprised of eight data bits each, into the corresponding

phase angle value expressed as a five-bit number. The design specifications are to

implement the Amplitude-to-Phase Converter in Standard Complementary Metal Oxide

Semiconductor (SCMOS) technology with a minimum transistor count, and ability to

operate at a clock frequency of 700 MHz.

The first part of the thesis consists of arctangent function research to determine

the different mathematical calculation methods. The most efficient implementation

method to achieve the above stated design specifications was determined to be the

CORDIC (Coordinate Rotation Digital Computer) algorithm and, thus, circuit design was

completed. MATLAB simulations were used to verify calculation errors, determine

noise margins, plot phase graphs, and to implement Quine-McClusky logic minimization.

T-SPICE netlists were generated from the schematic and simulations were run to

determine transistor and circuit electrical operation. Circuit simulations included: power

and current draw, speed of operation, noise margins, DC transfer characteristics, and the

verification of both timing and logic functionality. Finally, overall circuit logic

functionality for all 65,536 input combinations was completed using a VHSIC (Very

High Speed Integrated Circuit) Hardware Description Language (VHDL) program.

 xvii

THIS PAGE INTENTIONALLY LEFT BLANK

 xviii

I. INTRODUCTION

A. BACKGROUND OF THE DIGITAL IMAGE SYNTHESIZER

The primary purpose and the raison-d’être for the design, development, and

implementation of a phase converter is for its intended use in an electronic warfare chip.

This chapter covers the Digital Image Synthesizer (DIS) and the mathematics required for

its digital computer hardware implementation. As detailed in the paper, A Single-Chip

False Target Radar Image Generator for Countering Wideband Imaging Radars, the

following describes the DIS (After [1]):

Modern shipboard and airborne wideband synthetic aperture radars (SARs) and
inverse synthetic aperture radars (ISARs) are capable of generating images of
target objects. Figures 1 and 2 (courtesy of the Tactical Electronic Warfare
Division of the U.S. Naval Research Laboratory) show a photograph of the USS
Crockett and an image of the ship obtained from a U.S. Navy AN/APS-137 ISAR.
Such imaging capability is an advantage over previous technology because it
improves the ability to identify the specific type of target, distinguish friend from
foe, accurately guide weaponry, and defeat electronic protection such as false
target decoys. Thus, modern wideband imaging SARs and ISARs create a
difficult ship defense problem. For example, if an adversary is using a wideband
imaging ISAR, an electronic protection system cannot synthesize a false target by
just transmitting a signal that emulates a radar return off a single or a few
scattering surfaces. Instead, such a transmitted signal must emulate a coherent
sequence of reflections with proper delay, phase, and amplitude that is similar to
what would come from the multiple scattering surfaces at multiple ranges
(distances from the radar) of an actual ship.

Analog methods for generating false radar targets have included the use of
acoustic charge transport (ACT) tapped delay lines and fiber optic tapped delay
lines. ACT devices are no longer commercially available and also have limited
bandwidth, making them impractical against wideband imaging radars. Optical
devices are bulky and costly to manufacture, especially for the longer delay line
lengths needed to synthesize a false target image of even a moderately-sized ship.
However, the equations and algorithms needed to digitally synthesize a false
target radar image have evolved considerably over the last several years. With
modern, digital signal processing (DSP) techniques and advanced VLSI
fabrication processes, it is now possible to digitally synthesize a realistic false
target radar image of even a large war ship such as an aircraft carrier.

Figures 1 and 2 are reproduced below:

1

Figure 1. USS Crockett (From [1]).

Figure 2. AN/APS-137 ISAR image of the USS Crockett (From [1]).

Figure 3 shows the high-level circuit block diagram that illustrates the virtual

architecture of the DIS. The Q and I amplitude to phase conversion portion is highlighted

in red and yellow:

2

Figure 3. Block Diagram of the False Target Radar Image Synthesizer System (After

[2]).

Representing the virtual architecture as a mathematical one for hardware

implementation, the intercepted chirp pulse, s, as a function of time, can be represented as

a complex signal of the form [2]:

 () 22 (2)rect dj f t tts t e π

τ
+∆ =  

 
τ (1.1)

where:

• df Doppler frequency (between DRFM platform and ISAR),

• Pulse width, τ
• Modulation bandwidth, ∆

 and the definition of the ‘rect’ function is [2]:

3

11 for
2

rect .
10 for
2

t
t

t
τ

τ
τ

 <  =  
   >



 (1.2)

The intercepted chirp pulse is sampled and quantized via an Analog-to-Digital

Converter (ADC) generating the eight-bit In-Phase, I, and Quadrature, Q, data. The DIS

chip accepts as inputs this Q and I data and, via the amplitude-to-phase conversion

circuit, produces a corresponding phase angle, φ. Mathematically using Euler’s Theorem,

the complex exponential of Equation 1.1 can be represented as a sum of cosine and sin

terms:

 (1.3) cos sin .jxe x j± = ± x

The ADC converter samples the waveform 90° out of phase to generate the cos x and sin

x terms for each I and Q data set, respectively, the real and imaginary parts of the

complex signal. To determine the corresponding phase value of the Q and I data set, the

phase angle can be expressed as [2]:

 () (){ }
(){ }

Im 2,
Re 2 pk

s t
m n

s t
πφ

  = ∠ 
  

, (1.4)

where:

• ∠ , the angle of the parenthesized arguments, then quantized to kp bits,

• (){ }Im s t , imaginary Quadrature Term, Q, and

• (){ }Re s t , real In-Phase Term, I.

Stated another way, this represents the inverse (arc) tangent function because this

function produces a phase angle based upon its argument:

 (1.5) -1tan (/)z Q= I

which is then subsequently quantized to 2 pk = 25 = 32 values as the DIS hardware

operates on five-bit phase data.

4

Therefore, in order to generate the phase value from Q and I data, it is

necessary to implement the arctangent function in hardware. This thesis thereby

contributes to the DIS chip and is both an essential and critical module.

(,m nφ)

B. PRINCIPAL CONTRIBUTIONS

Initially, research was conducted on the arctangent function to determine its

characteristics and the different means of calculation. In an effort to minimize transistor

count, methods that avoid division and multiplication were further investigated.

Calculus, polynomial approximations, and direct logic function implementation were

quickly excluded as options because they would require high transistor counts and/or

produced excessive errors.

A lot of research was spent on the Look Up Table (LUT), as it is fundamentally a

very simple way to implement the amplitude to phase conversion. Indeed, the Q and I

values can be used as indexes to a table where a five-bit result is stored in the

corresponding addressed location. Unfortunately, the LUT size would be very large

(65,536 entries) and thus methods to reduce the table size were considered. Primarily,

only one quadrant of arctangent data would be required to be stored in a LUT because the

remaining three quadrant results could be determined by the sign of the input Q and I

values. Simple addition can be performed to translate the first quadrant phase result to

another quadrant. Reducing the number of bits by truncating the eight-bit Q and I data to

seven-bits was also researched, and discarded because of high resulting errors.

The CORDIC implementation method was researched to determine the required

transistor count and compared to the LUT approach. The CORDIC algorithm can be

unrolled, which leads to a very nice pipelined implementation. Since the number of

transistors to implement CORDIC is approximately one quarter the amount needed for a

one-quadrant LUT, the CORDIC method was chosen and circuit design undertaken.

Using the S-Edit circuit design CAD tool from Tanner Research [3], the Rotation

level was first designed and debugged. Mask layout of this circuit was completed in the

Tanner Research layout editor L-Edit, and the results verified via test vectors using the

5

circuit simulator T-SPICE. A general vector level was designed, and individual CORDIC

iteration levels were tailored using the general level by changing hardwired constants and

shifts. After renditions to tweak the design and debug it, a completed schematic was

finished and laid out which produced a nine-bit, z, phase result.

 A conversion circuit is required to convert the nine-bit phase result produced by

the CORDIC algorithm into a five-bit value for use in the DIS circuit. Different

implementation options including ROM, comparators, Sum-of-Products minimal logic,

and multiplexers were considered. A ROM (essential to a LUT approach) and

multiplexers would have a very large gate count and were, therefore, excluded as options.

The comparator implementation method was fundamentally the most straightforward,

elegant, and simple to implement, but suffered from having approximately three times

more logic gates than a minimal sum-of-products implementation. Quine-McClusky

minimization algorithms were run using MATLAB to generate the five logic functions

(one function for each bit), which were subsequently designed in S-Edit and laid out in L-

Edit.

At this point in the research, a completed schematic and mask layout was finished

and test vector cases simulated using T-SPICE and verified. As a final functional test of

the circuit, the entire schematic was exported to a VHDL program and tested for all

65,536 possible inputs, and phase result errors were found for some Q and I input vectors.

We determined that the number of bits used in the CORDIC hardware for precision was

insufficient, and the circuit was fixed to account for them. Unfortunately, the previously

finished mask layout would have to be redesigned, as it could not be easily patched to

account for the new circuit changes, and as such, this old mask layout is not included as

part of this thesis. This updated schematic was re-verified for both functional and timing

correctness, producing 100% correct results. Mask layout of the updated schematic is to

be completed at a later date.

6

C. ORGANIZATION OF THESIS

 This thesis documents the research, hardware implementation considerations,

design, and testing of a VLSI ASCI complex signal amplitude to phase conversion circuit

for use in the DIS. It is organized as follows:

 Chapter II presents detailed research on the arctangent function and methods that

can be used to calculate it. These methods are examined to determine whether they meet

the stated goals, and how they compare to each other in terms of accuracy, digital

hardware transistor count, and minimum clock frequency of operation.

 Chapter III presents the hierarchical progression of the circuit design of the

complex signal amplitude-to-phase converter. Important design considerations,

techniques, and approaches are presented for the transistor up to the complete design.

 Chapter IV summarizes the results of the thesis, key lessons learned, and

recommendations for future work.

7

THIS PAGE INTENTIONALLY LEFT BLANK

8

II. INVESTIGATION OF CONVERSION METHODS

A. TASKS

1. Aim

The goal of this research was to design and implement an amplitude-to-phase

conversion circuit for the inputs to the Digital Image Synthesizer (DIS) from a Digital

Radio Frequency Memory (DRFM). The basic algorithm is to extract a five-bit phase

angle from eight-bit Quadrature and In-Phase inputs by performing the arctangent

function.

2. Implied Tasks

• Determine the minimum transistor count hardware solution to implement the

arctangent function by investigating different computational methods

• Determine the most efficient method for digitally implementing an eight-bit Q

and I amplitude to phase conversion circuit which produces a five-bit number

• Design and test a pipelined optimum circuit able to run at a minimum of 700

MHz, including architectural and logic design, verification, and simulation

• Minimize circuit average power draw.

B. GENERAL

This chapter investigates the different means of implementing an amplitude-to-

phase conversion circuit. It first covers information on the arctangent function to

investigate its characteristics, as it is important to know the domain, range, and function

dependency on the independent variable. Within the guidelines of the implied tasks,

those mathematical methods that show potential for digital implementation are further

examined.

1. The Arctangent Function of a Real Number

The arctangent function: y = tan-1 x is the inverse of the restricted function [4]:
9

 tan , .
2 2

y x xπ= − < < π (2.1)

For every real value of x, y = tan-1 x is the angle between −π/2 and π/2 whose tangent is x.

The domain of the x values is −∞

1

 to +∞. The graph of tan-1 x is symmetric about the

origin, and is an odd function of x:

 1tan () tan .x x− − = − − (2.2)

From the Figure 4 graph of tan-1 x, it can be seen that tan-1 x has the same sign as x and

that tan-1 0 = 0. The red lines are the asymptotes that the function approaches as x goes to

±∞.

Figure 4. Plot of the Arctangent Function.

By visual inspection, it is easy to verify that most changes of the function occur

for values of x between ± 15. Values of x larger than this change incrementally more

slowly as the asymptotic limits are approached. Another observation is that the ranges of

angles produced by the arctangent are 0º to 45º for 0 < x < 1. Thus, to determine values

of phase from 45 to 90º for x > 1, one can calculate:

10

 1 1tan .
x

π −  −  
 

 (2.3)

2. The Arctangent Function of a Complex Number

For a complex number z = x + jy, given the real and imaginary parts, the

arctangent function is (written in different formats) [5]:

 -1a tan 2 (,) a tan(/) tan (/) arg()x y y x y x x= = = yi+ (2.4)

where:

• y = Im{z}

• x = Re{z}.

The arctangent of the quotient y/x is the angle of the magnitude vector measured counter-

clockwise on the unit circle from the positive real x-axis. The arg in Equation 2.3 stands

for the argument of the complex number and represents the phase value of a complex

number. Figure 5 shows the complex plane, the four quadrants, and a sample angle

measurement of a complex number vector shown in red.

Figure 5. Complex Plane Showing Example Angle Measurement.

Figure 6 graphically displays the first quadrant phase values of tan-1(Q/I) for quadrant

(positive) values of Q and I. The reader can verify the phase ranges from 0º to 90º

within the first quadrant, as expected. The different colors show different resulting

11

phase values for changing Q and I inputs. Constant colors for changing Q and I inputs

logically imply that the arctangent function generates the same phase value. Consider

two vectors of the form (Q,I): (5,5) and (10,10). They both possess a 45º-phase value

although they have different magnitudes.

Figure 6. First Quadrant Arctangent of a Complex Number.

3. Five-Bit Phase Quantization

The DIS uses a five-bit phase value that linearly increases from 0 to 31 as one

maps out the unit circle in a counter-clockwise direction. As it is not possible to

represent every integer phase from 0º to 360º using only 32 values, ranges of phase will

be indistinguishable from one another. Equivalently, the resolution of phase angles is:

 5

360º 360º º= 11.25 .bit5 bits 2 values
= (2.5)

A tabular description showing five-bit decimal values verse corresponding degree values

is shown as Table 1:
12

Output Number in Decimal vs. Phase in Degrees

Number Phase Number Phase
0 0 16 180
1 11.25 17 191.25
2 22.5 18 202.5
3 33.75 19 213.75
4 45 20 225
5 56.25 21 236.25
6 67.5 22 247.5
7 78.75 23 258.75
8 90 24 270
9 101.25 25 281.25
10 112.5 26 292.5
11 123.75 27 303.75
12 135 28 315
13 146.25 29 326.25
14 157.5 30 337.5
15 168.75 31 348.75

Table 1. Output Number in Decimal vs. Phase in Degrees.

With only five-bit phase resolution, all values of phase between 0º and 11.25º are

indistinguishable, and similarly for 11.26º to 22.5º, etc. This is important and will be

discussed later in the conversion of a nine-bit phase value to five-bits. A nine-bit number

has 29 = 512 different values and is the minimum number of bits required to represent all

360º integer numbers.

C. AMPLITUDE-TO-PHASE CONVERSION METHODS

There are several means to calculate the arctangent function including:

• Calculus,

• Look-up table,

• Sum-of-Products Logic Block,

• Polynomial approximation, and

• Coordinate Rotation Digital Computer (CORDIC).

The issue is to select a method that best meets the stated goals. The simplest hardware

method which possesses a minimum gate count is required and, as such, computational

13

and gate heavy methods which involve multiplication, or worse, division should be

avoided. Consider an eight by eight multiplier shown in Figure 7:

Figure 7. 8 x 8 Combinational Multiplier (From [6]).

Terms yixi are product terms generated by the logical AND function, and graphical boxes

with the plus symbol are one-bit Full Adders. Implementation of multiplication has many

logic gates and correspondingly long combinatorial delay. Division in hardware is one of

most complex and difficult to achieve at high speeds. It is very hardware intensive, slow,

and requires high bit precision and/or many iterations to produce accurate results.

Therefore, methods that do not require the computation of Q/I or have multiplication are

to be favored.

14

1. Calculus

Calculus methods involve limits and series. The derivative of the arctangent may

be defined as [4]:

 1
2

1tan
1

d x
dx x

− =
+

 (2.6)

and, therefore by integration, the arctangent function can be calculated [4]:

 1
2

1tan .
1

x dx
x

− =
+∫ (2.7)

Alternatively, for a complex number, z, it can be equated log-arithmetically [5]:

 1tan log .
2
i i zz

i z
− += ⋅  − 


 (2.8)

To implement a calculus method would require the determination of x2, a division

of Q/I to produce x, a multiplication of x times x, followed by an addition and division

operation to produce 21)1 (x+ . Subsequently, a large number of summations would be

required to closely approximate the integration. As such, further consideration of a

calculus hardware implementation was abandoned.

2. Polynomial Approximation

The arctangent function may be represented as a Taylor series [4]:

3 5 7 2 1

1

0

(1)tan ... 1
3 5 7 2 1

n n

n

x x x xx x x
n

⋅ +∞
−

=

− ⋅= − + − + = ≤
⋅ +∑ (2.9)

and it is obvious by inspection that a large number of multiplications and divisions are

required. Using MATLAB, a 15th-order polynomial approximation to the arctangent

function was coded. Figure 8 shows a plot of atan(x) vs. the polynomial approximation

and the resulting large error between the functions is readily apparent. To more closely

approximate the arctangent function, an even higher order polynomial would be required.

As hardware implementation would require many multiplications, divisions, and

additions, and because even a 15th-order polynomial approximation generates a large

resulting error, further consideration was not given to implementing a polynomial

15

Figure 8. 15th Order Polynomial Approximation to atan(x).

approximation.

3. Look Up Table

One of the issues behind computationally calculating the arctangent is the

necessity to determine the integer division of Q/I. A lookup table (LUT) allows inherent

computation of the division because the actual value of tan-1(Q/I) can be programmed

into the table and hence this is a strong favorite for implementation. Of all methods

studied, it is the most simple. Indexes into the table are the values of Q and I, and the

value at that addressed location is the corresponding result stored as a five-bit number.

Figure 9 shows all four quadrants of tan-1(Q/I) with eight-bit Q and I inputs. There are

65,536 different phase values, as there are 28 times 28 = 216 possible input combinations.

The plot was generated in MATLAB using short floating-point precision calculations.

The representation of the eight-input Q and I data is a signed two’s complement number

and, therefore, the range of values is –128 to +127. Figure 10 shows the same results

with the resulting phase quantized to five-bits. There are now only 32 different phases

(colors), showing 11.25° degree “steps”.
16

Figure 9. Arctangent(Q/I) – Floating Point Precision.

Figure 10. Arctangent(Q/I) – Floating Point Precision, Quantized to 32 Values.

17

A 16-bit input LUT would require 65,536 entries with each address containing a

five-bit value. This would be a very large transistor array to implement and would

require on the order: of 65,536 locations * 5 FETs = 328k FETs, not including decoding

circuitry. Research was then done to determine if the LUT size could be reduced. As a

particular quadrant of any given phase is determined by the sign values of the Q and I

inputs, the LUT is inherently redundant. It is only necessary to look up one quadrant of

stored arctangent data because the phase values of Q and I inputs to other quadrants can

be determined through rotation by the addition of a constant phase. Some calculators

operate on this same principle and require the user to verify that the answer is correctly

translated. For example, consider data input of (5,−5) shown in Figure 11:

Figure 11. Example: Q = 5, and I = 5, Phase Angle is 135°. −

the Ti89 calculator gives the result:

1 5tan 0.785398 rad 45
5 4

π−   = − = − = − − 

The addition of 180° would translate the answer to the second quadrant:

180° + (45°) = 135−

which is the correct answer. Referring to Figure 5, for positive values of Q and I, the

values of phase lie in the range of 0° to 90°, and the procedure to use to translate a one-

quadrant LUT would be:

18

1) If Q or I are negative, convert the number to a positive value via the two’s

complement. Store a sign bit result that this was done; one bit each for Q

and I.

2) With both Q and I now positive numbers, index into a first quadrant LUT

and read the five-bit phase angle.

3) Based on the stored sign bits, if:

 i. Q > 0 and I < 0, second quadrant, then angle = angle + 90°

 ii. Q < 0 and I < 0, third quadrant, then angle = angle +180°

 iii. Q < 0 and I > 0, fourth quadrant, then angle = angle +270°.

Thus, a one quadrant LUT would only require 16,384 addresses * 5 FETs/address = 82k

FETs, plus some addressing-decoding control logic and a five-bit adder. A transistor

count of saving is roughly one-fourth. Figure 12 shows the fourth quadrant portion of a

five-bit Q and I LUT as an example, where Excel calculated the values stored. The color

fill shows groups of 11.25° quantized five-bit values, and thus groupings of

indistinguishable phase values.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-15 0 -4 -8 -11 -15 -18 -22 -25 -28 -31 -34 -36 -39 -41 -43 -45
-14 0 -4 -8 -12 -16 -20 -23 -27 -30 -33 -36 -38 -41 -43 -45 -47
-13 0 -4 -9 -13 -17 -21 -25 -28 -32 -35 -38 -40 -43 -45 -47 -49
-12 0 -5 -9 -14 -18 -23 -27 -30 -34 -37 -40 -43 -45 -47 -49 -51
-11 0 -5 -10 -15 -20 -24 -29 -32 -36 -39 -42 -45 -47 -50 -52 -54
-10 0 -6 -11 -17 -22 -27 -31 -35 -39 -42 -45 -48 -50 -52 -54 -56
-9 0 -6 -13 -18 -24 -29 -34 -38 -42 -45 -48 -51 -53 -55 -57 -59
-8 0 -7 -14 -21 -27 -32 -37 -41 -45 -48 -51 -54 -56 -58 -60 -62
-7 0 -8 -16 -23 -30 -36 -41 -45 -49 -52 -55 -58 -60 -62 -63 -65
-6 0 -9 -18 -27 -34 -40 -45 -49 -53 -56 -59 -61 -63 -65 -67 -68
-5 0 -11 -22 -31 -39 -45 -50 -54 -58 -61 -63 -66 -67 -69 -70 -72
-4 0 -14 -27 -37 -45 -51 -56 -60 -63 -66 -68 -70 -72 -73 -74 -75
-3 0 -18 -34 -45 -53 -59 -63 -67 -69 -72 -73 -75 -76 -77 -78 -79
-2 0 -27 -45 -56 -63 -68 -72 -74 -76 -77 -79 -80 -81 -81 -82 -82
-1 0 -45 -63 -72 -76 -79 -81 -82 -83 -84 -84 -85 -85 -86 -86 -86
0 0 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90

Figure 12. Fourth Quadrant Five-bit Arctangent LUT.

The LUT approach has several different advantages and disadvantages. The

computation of tan-1(Q/I) can be completed in one simple step by the logical use of Q and

I as indices into the table. By only using the first quadrant of the LUT, the number of

transistors required can be minimized. Sign values of Q and I can be used to add a

constant phase to the output which only requires a small five-bit hardware implemented
19

adder. On the downside, fairly large decoding circuitry is needed, and a one-quadrant

LUT is still large in terms of transistor count. Thus, the LUT approach was decided

against for implementation of the amplitude to phase conversion circuit.

4. Sum-of-Products Logic Block

The amplitude to phase conversion can (theoretically) be accomplished

directly by a logic function that requires a minimum of three logic levels of gates: NOT-

AND-OR, or via Demorgan’s Theorem, NOT-NAND-NAND. Mano explains in Digital

Design [7]:

The complexity of the digital logic gates that implement a Boolean
function is directly related to the complexity of the algebraic expression which the
function is implemented. Although the truth table representation of a function is
unique, expressed algebraically, it can appear in many different forms. Boolean
functions may be simplified by algebraic means…

Minimization methods include Karnaugh Maps, Quine-McClusky (a tabular

algorithm), and heuristic methods such as the Expresso program. The Sum-of-Products

(SOP) uses minterms (output of the function is true or a logical one) to form the function

expression. The product denotes the AND operation and the sum denotes the OR

operation. As an example, a Full Adder function expressed in sum of minterms is:

(, ,) (1, 2, 4,7) ' ' ' ' 'F x y z x y z x y z x y z x y z= = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅∑

There are impracticable issues with implementing large functions as direct logic

functions. The amplitude-to-phase conversion circuit has a minimum of 16 inputs, not

including a Clk input for registers, and therefore, the number of possible output

combinations is , an incredibly large number! There are five bits produced by the

phase conversion and, thus, five different functions are required to be implemented.

Quine-McClusky minimization on a nine-input function took 10 computing days on a 1.4

GHz Pentium IV machine. As the number of possible output functions increases (the

number of inputs increases), the time to tabular search and minimize the function grows

exponentially. A 16-bit input function would take an exceedingly long time to compute.

Second, a very large number of function terms would be generated, well exceeding fan

1622

20

out and fan in limitations of the logic gates. As a test, Professor Fouts used Expresso to

generate the logic equations to produce five-bit output amplitude-to-phase conversion

circuit of 16 inputs. The time of computation took three days, which is orders of

magnitude faster than a Qunie-McClusky computation. However, Expresso does not

guarantee a minimal solution. The gate count to implement the functions via Expresso

were:

First Plane of Logic Gates:
• 0 inverters
• 1, 2-input NAND
• 5, 3-input NAND
• 1, 4-input NAND
• 1, 5-input NAND
• 26, 6-input NAND
• 100, 7-input NAND
• 232, 8-input NAND
• 432, 9-input NAND
• 627, 10-input NAND
• 857, 11-input NAND
• 755, 12-input NAND
• 557, 13-input NAND
• 182, 14-input NAND
• 16, 15-input NAND.

 Second Plane of Logic Gates:

• 109-input NAND to generate output bit 4
• 233-input NAND to generate output bit 3
• 784-input NAND to generate output bit 2
• 1429-input NAND to generate output bit 1
• 2251-input NAND to generate output bit 0.

The total transistor count equaled 92,468 FETs, not including required buffers. Brute

force SOP implementation of the amplitude to phase conversion is, therefore, not a viable

option.

5. CORDIC

A Coordinate Rotation Digital Computer (CORDIC) algorithm is a class of

iterative shift and add algorithms for rotating vectors in a plane until a result converges to

any desired precision or error. The error is proportional to the number of iterations

21

performed, unlike analytic iterative processes. In a simple operation, CORDIC performs

a sequence of rotations on two-dimensional vectors using a series of specific incremental

rotation angles selected so that each is performed by a shift and add operation [8].

Rotation of unit vectors provides a way to accurately compute trigonometric, logarithmic,

exponential, square root, and hyperbolic functions, as well as a mechanism for computing

the magnitude and phase angle of an input vector. The rotation of a vector is executed by

multiplying it by a series of constant phases, where the multiplication is always a power

of two. Thus, by shifting the vector (multiply by one-half or divide by two), no actual

multiplication hardware is required. CORDIC generally produces one additional bit of

accuracy for each iteration [8].

Mathematically describing the basic principles from the CORDIC FAQ [After 8]:

Given a complex value: C = Ic + jQc
create a rotated value: C' = Ic' + jQc'
by multiplying by a rotation value: R = Ir + jQr

1. When multiplying a pair of complex numbers, their phases add and their
magnitudes multiply:

 Ic' = Ic·Ir − Qc·Qr To add R's
from phase C: C' = C·R

 Qc' = Qc·Ir + Ic·Qr

 Ic' = Ic·Ir + Qc·Qr To subtract R's
phase from C: C' = C·R*

 Qc' = Qc·Ir − Ic·Qr
Table 2. Multiplying Complex Numbers.

2. To rotate by +90°, multiply by R = +j. Similarly, to rotate by -90°,
multiply by R = −j:

 Ic' = −Qc To add 90°:
Qc' = Ic

(negate Q, then swap)

Ic' = Qc
To subtract 90°:

Qc' = −Ic
(negate I, then swap)

Table 3. Rotating by ±90°.
3. To rotate by phases of less than 90°, successively multiply by numbers of
the form "R = 1 ± jK" where K will be decreasing in powers of two, starting with

22

20 = 1.0. The symbol "L" designates the power of two itself: 0, −1, −2, etc.
Since the phase of a complex number "I + jQ" is atan(Q/I), the phase of "1 + jK"
is atan(K). Likewise, the phase of "1 − jK" = atan(−K) = −atan(K). To add
phases "R = 1 + jK" is used; to subtract phases "R = 1 − jK". Since the real part of
this, Ir, is equal to one, the table of equations can be simplified to add and
subtract phases for the special case of CORDIC multiplications to:

Ic' = Ic − K·Qc = Ic − (2-L)·Qc To add a phase, multiply
by R =1 + jK: Qc' = Qc + K·Ic = Qc + (2-L)·Ic

Ic' = Ic + K·Qc = Ic + (2-L)·Qc To subtract a phase,
multiply by R =1 − jK: Qc' = Qc − K·Ic = Qc − (2-L)·Ic

Table 4. Add/subtract phases less than 90°.

Table 5 details the phases and magnitudes of each of these multiplier
values, listing values of L, starting with 0, and shows the corresponding values of
K, phase, magnitude, and CORDIC Gain. Each rotation has a magnitude greater
than 1.0 for using rotations of the form "1 + jK", which is usually undesirable, but
unimportant in the calculation of the phase of a vector. The CORDIC Gain
column in the table is a cumulative magnitude calculated by multiplying the
current magnitude by the previous magnitude. It converges to about 1.647;
however, the actual CORDIC Gain depends on how many iterations are done.

L K = 2-L R = 1 + jK
Phase of R
in degrees
= atan(K)

Magnitude of R CORDIC Gain

0 1.0 1 + j1.0 45.00000 1.41421356 1.414213562

1 0.5 1 + j0.5 26.56505 1.11803399 1.581138830

2 0.25 1 + j0.25 14.03624 1.03077641 1.629800601

3 0.125 1 + j0.125 7.12502 1.00778222 1.642484066

4 0.0625 1 + j0.0625 3.57633 1.00195122 1.645688916

5 0.03125 1 + j0.031250 1.78991 1.00048816 1.646492279

6 0.015625 1 + j0.015625 0.89517 1.00012206 1.646693254

7 0.007813 1 + j0.007813 0.44761 1.00003052 1.646743507

...

Table 5. CORDIC Vectoring Flow (After [8]).

23

There are two operations to the CORDIC algorithm for trigonometric

calculations:

1. Rotation – the vector is rotated by a specified angle; and

2. Vectoring – the vector is rotated to the x-axis while recording the angle

required to make that rotation.

In order to calculate phase, the Rotation step is completed using the angle ±90°. The

objective is to rotate the vector to the right half of the complex plane so that the vector

can subsequently be vectored to the positive x-axis. The sign of the Q data determines

whether an addition or subtraction takes place. If the phase is positive, rotate by −90°,

and if the phase is negative, rotate by +90°. After the initial Rotation, CORDIC

Vectoring as per Table 5 is executed, and in each addition/subtraction step, the actual

number of degrees rotated is accumulated. After the requisite number of rotations to

calculate a result with a desired maximum error, the phase of the complex number is the

negative of the rotation required to bring it to a phase of zero. Consider a CORDIC

Implementation example: given a complex number z = a + bj, for example z0 = −8 + 4j,

determine the phase φ.

24

Figure 13. CORDIC Example: z0 = −8 + 4j.

Beginning with the blue vector input from Figure 13, the following details the CORDIC

steps:

1. The sign of the Q data is positive (Q = 4), so the Rotation step is −90°.

The new vector in red is produced as per Table 3: negate I and swap. Store

rotation of −90°. The new vector is (4,8).

2. Vector the new complex number, iteration L = 0. The sign of Q is positive

(Q = 8) so subtract 45° to produce the green vector as per Table 4. Accumulate

−45°, thus the phase equals: −90° + −45° = −135°. New vector is (12,4).

3. Vector the new complex number, iteration L = 1. The sign of Q is positive

(Q = 4) so subtract 26.56505° to produce the orange vector. New accumulated

phase is –161.56505°. New vector is (14, −2).

25

4. Vector the new complex number, iteration L = 2. The sign of Q is

negative (Q = −2) so add 14.03624° to produce the plum vector. New

accumulated phase is –147.52881° etc.

In tabular form, Table 6 continues the CORDIC to L = 17 iterations. The resulting angle

of –153.435° must then be negated, giving the proper phase angle of 153.435° for an

input complex number of (−8,4).

There are three key salient points to note from Table 6. First, an eight-bit two’s

complement number has the range of values from –128 to +127. As the constant value of

phase added or subtracted during each iteration has a decimal portion, the number of bits

on Q and I must increase to hold these calculated values. For example, the I data value

during each iteration continues to positively grow in magnitude, and depending on input

values of Q and I, may exceed +127. Thus, more than eight integer bits are required to

represent growing I values. Second, as the Q data value is rotated to zero, it becomes a

fractional number and requires high decimal precision, vice integer precision. Otherwise

the sign of the Q data may not be precise enough to properly determine the next iteration

decision for addition or subtraction. Third, after the initial Rotation, the values of I lie on

the right half of the complex plane and are always positive values, while the values of Q

still change positive and negative depending on the value of phase added. Hence, I data

bits larger than the MSB (I15) are always a logical zero after the Rotation step.

26

Table 6. Detailed Calculation Flow of CORDIC Example (After [8]).

Figure 14 shows MATLAB calculations of the CORDIC implementation of the

amplitude to phase conversion, to nine iteration accuracy with eight-bit Q and I inputs,

while Figure 15 shows the same results quantized to 32 bits.

27

Figure 14. CORDIC Arctangent(Q/I).

Figure 15. CORDIC Arctangent(Q/I) Quantized to 32 Values.

28

The CORDIC method offers a hardware-simple, pipeline-capable, low-transistor

count hardware implementation. It can achieve any desired accuracy and avoids

multiplication by using shifts by powers of two. For this reason, the CORDIC method

was chosen to implement the amplitude to phase conversion.

D. CORDIC HARDWARE IMPEMENTATION

There are three primary methods for the hardware implementation of the

CORDIC algorithm. These are [After 9]:

• Bit Parallel Iterative CORDIC. Each branch consists of an adder-subtractor
combination, a shift unit and a register to buffer the output. A finite-state
machine is needed to control the multiplexers, the shift distance and the
addressing of the constant values.

Figure 16. Bit Parallel Iterative CORDIC (From [9]).

For each input vector, it takes n clocks to achieve n iterations, assuming that no

additional pipelining is required. Thus this is not conducive to a high speed

implementation when, on each clock, new data is presented as inputs.

• Bit Serial Iterative CORDIC. Bit-serial means only one bit is processed at a
time and hence the cross connections become one bit-wide data paths. The
throughput becomes a function of [9]:

_
_ _ * _

clock rate
number of iterations word width

which is not a fast implementation method.

29

Figure 17. Bit Serial Iterative CORDIC (From [9]).

• Bit Parallel Unrolled CORDIC. Instead of buffering the output of one iteration
and using the same resources again, one can simply cascade the iterative
CORDIC, which means rebuilding the basic CORDIC structure for each
iteration. Consequently, the output of one stage is the input of the next one
and in the face of separate stages two simplifications become possible. First,
the shift operations for each step can be performed by wiring the connections
between stages appropriately. Second, there is no need for changing constant
phase values and they can therefore be hardwired. The purely unrolled design
only consists of combinatorial components and computes one value per clock
cycle. Input values find their path through the architecture on their own and do
not need to be controlled [9].

30

Figure 18. Bit Parallel Unrolled CORDIC [After 9].

Of the three methods, the Bit Parallel Unrolled implementation, shown in Figure

18, provides the highest throughput speed and simplicity of design, albeit at the expense

of replicated hardware iteration stages. Therefore, this CORDIC hardware method was

implemented. A decision made outside the research of this thesis was the accuracy of the

amplitude-to-phase conversion required. MATLAB simulations were run by a fellow

student, Fernando LeDantec, to determine the acceptable error. It was decided that six

iterations were sufficient for providing a result to the DIS architecture. Table 7 shows the

flow of the previous example using a six-iteration CORDIC hardware, including the

binary values at each stage. The highlighted number is the CORDIC produced result in

degrees, and the red numbers show the input values and corresponding binary five-bit

output.

31

Table 7. Detailed Hardware Flow of a six-iteration CORDIC Implementation.

32

III. SCHEMATIC DESIGN OF THE Q/I PHASE CONVERTER

A. HIERARCHICAL SCHEMATIC DESIGN OVERVIEW

The circuit was designed using Tanner Research software, detailed in Appendix

D, for MOSIS fabrication using the TSMC CL018 process. This CMOS process has six

metal interconnect layers and one polysilicon layer. The process is for 1.8-volt

applications and has a thick oxide layer for making 3.3-volt transistors. The 0.18-micron

sized CMOS logic process uses epitaxial wafers and possesses the characteristics of

fabricating: silicide blocks, thick gate oxide, electrostatic discharge (3.3 V), NT_N, deep

n_well, ThickTopMetal (inductor), and MiM [10]. This chapter details: low level

transistor and example gate electrical characteristics; secondary sub-circuits that are

important in the amplitude to phase conversion circuit design; number system format;

CORDIC Rotation and Vector level implementation; 9-to-5-bit conversion; and circuit

verification. Appendix B details the MOSIS TSMC 0.18-micron Field Effect Transistor

Parameters.

B. TRANSISTORS

1. N-FET

The N-channel Field Effect Transistor (N-FET) is modeled in S-Edit as a symbol

and has no schematic representation. As it is a lowest level circuit building block, it is

declared via a property definition for T-SPICE netlist extraction. The T-SPICE definition

of the N-FET:

M# %[1] %[2] %[2] %{B} CMOSN W=5*lambda L=2*lambda

AS=5.5*lambda*5*lambda AD=5.5*lambda*5*lambda PS=5*lambda +

5.5*lambda + 5*lambda + 5.5*lambda PD=5*lambda + 5*lambda + 5.5*lambda

+ 5.5*lambda

Salient points are the transistor size of width of five lambda and length of two

lambda, where lambda is 0.09x10-6 meters. These sizes can be changed to make different

sized FETs for different transistor characteristics, most importantly, gain and current

33

sourcing/sinking capabilities. A FET of width 0.45-microns and length of 0.18-microns

is the minimum sized possible for the CL018 fabrication process. The other parameters

defined for the FET are areas for capacitance calculations. Figure 19 shows the S-Edit

symbol, detailing the Gate (G), Source (S), Drain (D), and substrate connection (B). It

should be noted that all ports are unidirectional, i.e., source to drain current flow, because

this is important for VHDL extraction and simulation.

Figure 19. N-FET.

2. P-FET

Similarly, the P-channel FET is a property and is defined:

M# %[2] %{G} %{S} %{B} CMOSP W=5*lambda L=2*lambda

AS=5*lambda*5.5*lambda AD=5*lambda*5.5*lambda PS=5*lambda +

5*lambda + 5.5*lambda + 5.5*lambda PD=5*lambda + 5*lambda + 5.5*lambda

+ 5.5*lambda

The P-FET symbol:

Figure 20. P-FET.

34

3. N/P-FET Current and Voltage – Drain to Source

Figure 21 shows the IDS vs. VDS characteristic curves for the N-FET and, similarly,

for the P-FET in Figure 22.

Figure 21. N-FET IDS vs. VDS.

The MOSIS Parametric test results provide a threshold voltage VTN = VTP = 0.359V. The

applicable operating characteristics at the hatched data points on the above and below

figures is summarized as Table 8:

PFET

VDS

VGS

IDS µA

NFET

VDS

VGS

IDS µA

−1.000 −1.2 −51.793 1.004 1.2 153.691

Table 8. N/P-FET Operating Point Data.

The current from Drain to Source of the FET can be first order equated as [11]:

35

2(

2
GS T

DS
V VI β −=) (3.1)

where:

• β is the transistor gain factor and is used in the calculation of

transconductance,

• VGS is the voltage from Gate to Source, and

• VT is the threshold voltage.

Figure 22. P-FET IDS vs. VDS.

Calculations of the gains is therefore:
3

4 2
2 2

2 2 153.691 10 4.350 10 A/V
() (1.2 0.359)

DS
N

GS T

I x x
V V

β
−

−⋅= = =
− −

6

4 2
2 2

2 2 51.793 10 1.465 10 A/V .
() (1.2 0.359)

DS
P

GS T

I x x
V V

β
−

−⋅= = =
− −

36

C. LOGIC GATES

This section provides an overview of the most basic CMOS gates, their noise

margins, transfer functions, and operating characteristics. It is not all-inclusive, but is

provided to show some of the electrical properties and characteristics that compose the

amplitude-to-phase converter design.

1. Inverter

An N-FET and P-FET combined in series form an inverter when their gates and

drains are tied together, and is one of the most basic CMOS logic cells. Figure 23 shows

the schematic (bottom right) and symbol (top left) for the inverter:

Figure 23. Inverter Symbol (top left) and Schematic (right).

Logically, an inverter provides an output 180° phase shift of the input signal and thereby

provides the logic transfer function NOT, or complement. In CMOS inverters, the gate

threshold voltage is dependant on the βN /βP ratio. A ratio of one allows a capacitive load

37

to charge and discharge in equal times by providing equal current-source and –sink

capabilities as it relates to the mobility of holes being less than the mobility of electrons.

It also affects the allowable noise voltage on the input of a gate so that the output will not

be affected [After 11]. The ratio may be calculated to be:

2.969.N

P

β
β

=

Another important design factor is that the gain is directly proportional to the

transistor width and length. For N-FETs [11]:

 N N
N

ox N

W
t L

µ εβ
 

= 
 

 (3.2)

where:

• µ is the effective surface mobility of the carriers in the channel,

• ε is the permittivity of the gate insulator,

• tox is the thickness of the gate insulator,

• WN is the width of the transistor channel, and

• LN is the length of the channel.

Therefore, a three times sized P-FET would (approximately) provide a βN /βP ratio of one,

but would also require three times more layout area. A decision was make to implement

all lower-level cells using minimum sized P-FETs to conserve layout, rather than to

equate noise margins. Figure 24 shows three different βN /βP ratios for differently sized

P-FETs where the NFET size is five lambda. Notice that the three-to-one sized P-FET to

N-FET (in yellow, βN /βP ratio of one) transitions through the center voltage of 0.9V. The

voltage out vs. voltage in plot characteristics is used to calculate the gates noise margins.

38

Figure 24. βN /βP Ratios and Inverter Noise Margins.

Noise margins low and high are determined via Equations 3.3 and 3.4 respectively [11]:

MAX MAXL IL OLNM V V= − (3.3)

Min MinH OH IHNM V V= − (3.4)

where:

• NML – noise margin low,

• NMH – noise margin high,

• VILMAX – voltage input low maximum,

• VOLMAX – voltage output low maximum,

• VOHMIN – voltage output high minimum, and

• VIHMIN – voltage input high minimum.

The data from Figure 24 was imported into MATLAB and the program code

listed at Appendix A was used to calculate the noise margins. Results are listed in Table

9.

39

 Noise
Voltage Value Units Margins Value Units
VOHMIN 1.73 V
VIHMIN 0.87 V

NMH 0.86 V

VILMAX 0.572 V
VOLMAX 0.082 V

NML 0.49 V

Table 9. Inverter Noise Margins.

It should be noted that the noise margins are uneven because the βN /βP ratio equals

2.969, the green plot from Figure 24. Values determined and displayed in Table 10 were

determined using T-SPICE netlists where the circuit had an input shaping circuit of four

inverters and the inverter test circuit possessing a load of seven other inverters.

Name Value Units

TR 0.290 ns
TF 0.129 ns

TPDLH 0.172 ns
TPDHL 0.063 ns
IPEAK −133.573 µΑ

Voltage 1.8 V
PPEAK 240.43 µW

Table 10. Inverter Electrical Parameters.

The figures supporting the above table values are listed as Figures 25 through 28.

Applicable terms are [11]:

• TR – rise time, the time for a waveform to rise from 10% to 90% of its steady-

state value,

• TF – fall time, the time for a waveform to fall from 90% to 10% of its steady-

state value,

• TPDLH – time of propagation delay low to high, the time difference between

input transition (50%) and the 50% output level,

• TPDHL – time of propagation delay high to low, the time difference between

input transition (50%) and the 50% output level,

• IPEAK – peak current draw, and

• PPEAK – peak power draw.

40

Figure 25. Inverter Proper Operation.

Figure 26. Inverter TF and TPDHL.

41

Figure 27. Inverter TR and TPDLH.

Figure 28. Inverter Current Draw.

42

The peak power drawn by an inverter can be calculated using the equation:

 Power = Voltage * Current (3.5)

which yields 240.34 µW.

2. Pass Gates

Combining an N-FET and P-FET in parallel forms the pass gate, also known as a

complementary switch or transmission gate. This circuit acceptably passes both a logic

‘0’ and logic ‘1’ depending upon the CON and ~CON signals. The pass gate is another

basic CMOS logic circuit that can be used to build higher order circuits such as the

Exclusive-OR and Exclusive-NOR gates, registers, etc. Figure 29 shows the pass gate

symbol and circuit, while Table 11 details T-SPICE circuit parameters using a three-

inverter output load. The pass gate is a bi-directional structure, but has been updated in

the circuit schematic to have uni-directional logic transmission for VHDL definition

extraction.

OutIn

Co
n

Co
nN
ot

Vdd

DS

DS

PGate OutIn

Co
nN
ot

Co
n

Figure 29. Pass Gate Symbol (top left) and Schematic (right).

43

Name Value Units
TR 0.278 ns

TF 0.106 ns

TPDLH 0.051 ns

TPDHL 0.044 ns

IPEAK −36.41 µΑ
Voltage 1.8 V
PPEAK 65.5 µW

Table 11. Pass Gate Electrical Characteristics.

3. Buffer

A buffer is a non-inverting gate formed by combining two inverters in series such

that it restores output voltage levels to their peak levels. It does not perform any logic

transfer function itself, as the output is the equal to the input. The symbol and circuit are

shown as Figure 30:

 OutIn

In Out

Figure 30. Buffer Symbol (top left) and Schematic (right).

Tables 12 and 13 detail buffer noise margins and electrical parameters:

 Noise
Voltage Value Units Margins Value Units
VOHMIN 1.798 V
VIHMIN 0.723 V

NMH 1.075 V

VILMAX 0.765 V
VOLMAX 0.006 V

NML 0.759 V

Table 12. Buffer Noise Margins.

44

Name Value Units
TR 0.183 ns
TF 0.084 ns

TPDLH 0.118 ns
TPDHL 0.087 ns
IPEAK −133.17 µΑ

Voltage 1.8 V
PPEAK 240 µW

Table 13. Buffer Electrical Characteristics.

4. XOR

The exclusive-OR (XOR) gate has the logical transfer function output of x or y

but not both, where x and y are gate inputs:

Input X Input Y Output Z
0 0 0
0 1 1
1 0 1
1 1 0

Table 14. XOR Truth Table.

The XOR gate is built using pass gates, and therefore, has a non-restoring output z

value. The symbol and circuit are shown as Figure 31:

45

X

Y

Z

PGate

PGate

Z
Y

X

Figure 31. XOR Symbol (top left) and Schematic (right).

Table 15 details the XOR electrical operating characteristics:

Name Value Units

TR 0.232 ns

TF 0.081 ns

TPDLH 0.028 ns

TPDHL 0.061 ns

IPEAK −212.4 µΑ
Voltage 1.8 V
PPEAK 382.2 µW

Table 15. XOR Electrical Characteristics.

5. NAND2

The two-input NAND gate symbol and circuit are shown as Figure 32:

46

OUT
B

A

B

A

OUT

Vdd

D

S

D

S

D

S

D

S

Figure 32. NAND2 Symbol (top left) and Schematic (right).

The NAND is the complement output of the AND function, and is directly realizable

(built) in CMOS hardware by using two N-FETs in series and two P-FETs in parallel.

The NAND2 truth table:

Input X Input Y Output Z
0 0 1
0 1 1
1 0 1
1 1 0

Table 16. NAND2 Truth Table.

Higher-level input NAND gates are built by consecutively adding N-FETs in series to the

ground pull-down chain and P-FETs in parallel to the Vdd pull-up. NAND2 noise

margins and operating characteristics are shown in Tables 17 and 18:

47

 Noise
Voltage Value Units Margins Value Units
VOHMIN 1.70 V
VIHMIN 1.016 V

NMH 0.684 V

VILMAX 0.773 V
VOLMAX 0.143 V

NML 0.63 V

Table 17. NAND2 Noise Margins.

Name Value Units

TR 0.062 ns

TF 0.052 ns

TPDLH 0.038 ns

TPDHL 0.087 ns

IPEAK −225.4 µΑ
Voltage 1.8 V
PPEAK 406 µW

Table 18. NAND2 Electrical Characteristics.

D. SECONDARY SUB-CIRCUITS

Previous work by students and a professor laid some of the foundation for S-Edit

logic circuits. Those of primary importance and used in this circuit design of the

amplitude-to-phase converter are registers [12] and the 16-bit Carry Look Ahead Adder

(CLAH).

1. Registers

A one-bit register is built using pass gates to form a D-Master/Slave Flip-Flop

(DMSFF) with corresponding control logic circuitry. Register loading can be controlled

using the Load (LD) signal. When the LD signal is a logic ‘1’, the register loads the D

input value. When LD is a logic ‘0’, the Q output of the register is fed back into the D

input, thereby, holding the last state value. The rate at which the register samples and

produces outputs is controlled via the Clock (Clk) signal. On each rising edge of the Clk,

48

the one-bit input D Master-Slave register samples the input data value and holds it via

feedback. Figure 33 shows the circuit design of a one-bit DMSFF register with

corresponding control signal logic in Figure 34. Table 19 details the operating

characteristics.

Name Value Units
TR 0.255 ns

TF 0.158 ns

TPDLH 0.343 ns

TPDHL 0.345 ns

IPEAK -195.08 µΑ
Voltage 1.8 V
PPEAK 351.1 µW

Table 19. DMSFF1 Characteristics.

Qnot

QD

Clk

~[[~LD][~CLK]]

[~LD][~CLK]

~[LD[~CLK]]

LD[~CLK]

ms

PGate

PGate

PGate

PGate

PGate

Figure 33. Register Schematic (From [12]).

49

Figure 34. Register Control Logic (From [12]).

~Q ~Q
RCA_DMSFF1

Q Q

LD Ld

D D

ClkCLK

Figure 35. One-bit DMSFF Register Symbol.

2. RCA_PSVCHAIN

As previously stated, the method chosen to implement the phase conversion is the

bit parallel unrolled CORDIC. Each level of iteration is a stand alone functional block,

and is pipeline registered to ensure clock speed operation of 700 MHz. The Phase Signal

Valid (PSV) is a control signal that specifies when the output is a valid result. As detailed

later on, there are sixteen pipeline registers in the amplitude to phase conversion circuit

and, therefore, there is pipeline latency of sixteen clock periods from input data until the

correct output is produced. On the first clock signal to the circuit, values of Q and I are

loaded into the first input stage register. On the next clock signal, the output register of

that stage produces output values to the next stage register. Therefore, this “pipeline

startup” and sixteen clock periods of delay to see the correct output must be accounted

for. The amplitude-to-phase conversion circuit, therefore, has a register chain of sixteen

one-bit registers to follow the Q and I data through the CORDIC iterations and declare

50

when the output is valid. Table 20 shows the operation of the register and the

corresponding latency. The ‘X’ is “don’t care”.

Inputs
A Clk LD Register Outputs
X X 0 No Change – Last Register Output

A

1 A loaded on rising edge, A seen on
output after propagation delay

Table 20. Register Operation.

The circuit is show in Figure 36, and is comprised of two eight-bit registers connected in

series.

Figure 36. 16 Clock Period Delay – Phase Signal Valid Circuit.

3. RCA_13927Buffer

The global control signals, Clk and LD, control 119 registers and have a large fan

out of gates (capacitive load to charge). There are two primary means to distribute these

signals to all registers while minimizing skew, maintaining the rectangular waveform

51

shape and ensuring fast rise and fall times. The signals can be buffered through a fan out

tree or can be buffered by one large driver circuit. Note that the nine-bit phase values in

the 9-to-5 Bit Conversion circuit also utilizes this sub-circuit as well. To minimize the

number of transistors required and the amount of layout wiring that would be required,

the large driver circuit option was implemented. An optimum stage-sizing ratio ‘aopt’

was determined iteratively to be the value 3.4 from [11]:

opt

opt

K a
a

opta e
+

= (3.5)

and

 0.776drain

gate

Ck
C

= = (3.6)

where:

• Cdrain is the drain capacitance, and

• Cgate is the gate capacitance.

Inverter size scaling should therefore increase (approximate 3.4 to an integer

value) by a factor of three for optimum gate driving properties. T-SPICE testing shows

that a 27x inverter could adequately drive a capacitive load of 100+ inverters within a

700 MHz clock period. Figure 37 shows the non-inverting (buffer) driver circuit:

Figure 37. Buffer Driver Circuit.

4. 16-Bit Pipelined Adder/Subtractor

Dr. Fouts designed the 16-bit CLAH that is used as the fundamental building

block in the design of a 16-bit Adder/Subtractor (A/S). The adder was tested alone and

found to operate at a maximum clock speed of 780 MHz. However, with added gate

delay, because of additional gates on the front end to change the design to an A/S, timing

problems were found in the circuit operating at 700 MHz. As such, it could not be
52

guaranteed to produce proper timing results and a pipeline register stage was inserted to

meet the required clock period. The A/S works on the principle of always doing addition,

but via the two’s complement, adds the negative of the B input number to execute

subtraction:

• Addition: A + B = Sum

• Subtraction: A + (−B) = Difference.

The circuit is show in Figure 38. XOR gates are used to form the one’s complement of

the B input. Subtraction is enabled via a control line M when M = ‘1’. Table 21 shows

the operation of the one’s complement. In rows two and four, whenever the M bit is a

one, the output Z is the complement of the input X. In rows one and three, the output Z

follows the input when M = ‘0’. Thus, the control signal M controls the one’s

complement on the B input, and by adding a one to the CLAH via the Carry In signal, Ci,

by also routing the M signal there, the two’s complement is formed, and subtraction

occurs.

Input X Input M Output Z

0 0 0
0 1 1
1 0 1
1 1 0

Table 21. XOR Truth Table.

53

Figure 38. 16-bit Pipelined Adder/Subtractor.

54

E. NUMBER FORMATS

The eight-bit two’s complement Z (accumulated phase value), Q and I numbers

are physically converted to a 16-bit two’s complement fixed-radix positional number

system when passed as inputs to the RCA CORDIC Level 45. The 16-bit number is of

the form of a 9+7 fixed-point decimal number, which has a two’s complement integer

radix (base) of nine bits and an implicit digit set of seven bits (see Table 22). It is of

sufficient precision to account for increasing I and decreasing Q values during CORDIC

iterations. The I values as discussed previously, however, can require more that nine

integer bits after the initial Rotation stage.

MSB
Decimal

Point LSB
15 14 13 12 11 10 9 8 7 . 6 5 4 3 2 1 0

Bit Position

Number:
9-bit Integer 7-bit Decimal

Table 22. CORDIC Iteration Number Format.

The different phase values of R expressed in degrees are listed in Table 23 using

this number format. The table also presents the negligible error by representing the

constant R phase values using this number format of only 16-bits.

During Q and I shifts shown previously in Table 4, the numbers should be, in

general, hardwired-shifted sign extended by replicating the MSB. Indeed, this is the

means by which the Q values are shifted. However, because I is always a positive

number after Rotation, the fictional 10th integer bit of I (and higher) is always a logical

zero. Thus, some MSB I shifts are grounded as appropriate.

55

56
Table 23. 16-Bit Number Format.

F. CORDIC ROTATION LEVEL

1. Overview

The CORDIC rotation level performs the initial Rotation step by adding a

constant phase value of ±90°. It takes as inputs, two eight-bit Q and I values on each

rising edge clock pulse and performs the rotation by negating one of the values and

swapping, dependant upon the sign of Q in accordance with Table 3. A stand-alone

functional block, it possesses input and output stage pipeline registers. The internal state

machine control is the Q7 signal, the most significant sign bit of the Q data. When Q7 =

‘1’, the number is negative, and +90° is added to the Z phase output register. This is

accomplished by directly using the value of Q7 to program the register with either +90°

or −90° in binary. Table 24 shows both phase constant numbers and the corresponding

Q7 logic value, the appropriate binary value to load into each bit position displayed as Z

logic. For example, Z0, the least significant bit loaded into the D0 of the register, is

always zero, and thus, is a grounded input. Z1 is always one and is, therefore, always

pulled high to Vdd. The remaining Z<7..2> bits are buffered and inverted, as applicable,

Q7 values.

Table 24. Q7 Programming of ±90°.

The negation of one input number is accomplished by an algorithmic two’s

complement implementation. Swapping is a “logical switch” of the output data. Q input

data becomes the I output data and vice versa. Finally, the circuit has a correction block

to catch an input value of –128, which cannot be two’s complemented to +128 because

this positive number cannot be represented with only eight bits.

2. Rotation Circuit Diagram

The complete circuit is shown as Figure 39, with alphabet numbered sub-circuits

detailed in Sections 3 through 5.

57

Figure 39. Rotation Level Symbol (left) and Circuit (Right).

58

3. Constant Phase Loading

Figure 40 shows the zoomed location ‘A’ of Figure 39. The two vertical paths

present a two-inverter (buffered and non-inverting) and three-inverter (buffered and

complementing) chains, respectively, to provide the Q7 and ~Q7 signals to the output

pipeline register as explained in the overview section above. The one-bit DMSFF

ensures Q7 control signal data synchronization with the flow of data through the Q Out

and I Out circuit sections.

Z Out

Z1
3 Z8Z1
5

Z1
4

Z1
1

Z1
0 Z9Z1
2

Vdd

8-Bit MS D Register Flip Flop
CLK

D0D1D2D3D4D5D6D7

LD

Q0Q1Q2Q3Q4Q5Q6Q7 ~Q
0

~Q
1

~Q
2

~Q
3

~Q
4

~Q
5

~Q
6

~Q
7

Clk

D

Ld

Q
RCA_DMSFF1

~Q

Figure 40. ±90° Phase Loading.

59

4. Negative 128 Fix Circuit

Shown as block ‘B’ in Figure 39, this sub-circuit detects when an input number is

–128, or 1000 0000 in binary, via the NOR and AND gates, and changes it to –127 prior

to the two’s complement circuit. If the output of the AND gate is true, the XOR flips the

least significant bit, thereby, changing the number to –127, or 1000 0001 in binary, and

thus, allowing the number to be negated to become +127, a value which is represented as

an eight-bit number. Increasing the number by the “addition” of one to produce –127 has

no effect on the phase results produced by the CORDIC algorithm. An alternative

method to correct this –128 overflow error, is to increase the Q and I data to nine-bits in

this stage, which would result in an increase to nine-bit output registers and additional

logic in the two’s complement circuit, vice a four gates solution shown below as Figure

41.

Figure 41. Negative 128 Circuit Fix.

5. Two’s Complement Circuit

 Shown as block ‘C’ in Figure 39, this circuit negates an input number. The

negation of the number is not implemented via the two’s complement using eight-bit

addition, as in:

Number: 0011 0011 = 51

Ones Complement: 1100 1100 = −52

Add One: + 1

 Two’s Complement: 1100 1101 = −51

Rather, to save on transistor count, the circuit uses an algorithmic approach, described by

the following pseudo-code:

60

BEGIN

Set Flag = 0;

FOR bits 0 to n:

IF (Flag = = 1)

THEN Flip bit;

ELSEIF (bit = = 1)

THEN Set Flag = 1;

 END FOR Loop

END

This algorithm is implemented using only 21 logic gates, which is much smaller than the

number of gates required for an eight-bit adder circuit. The hardware implementation

uses XOR gates to execute bit flips, controlled by the ripple Flag that can be thought of as

an enable signal. The ripple of the Flag signal has considerable delay from the least

significant bit (LSB) until it arrives at the most significant bit (MSB), and therefore, has

the inclusion of a “carry-look ahead” block. This block, seen as the center top three gates

and highlighted in yellow in Figure 42, quickly propagates the Flag signal to the MSB,

thereby reducing combinatorial logic delay and achieving high clock speed operation.

Figure 42. Two’s Complement Circuit.

G. CORDIC GENERAL VECTOR LEVEL

1. Overview

The CORDIC General Vector Level is one stage of the bit-parallel unrolled

CORDIC hardware that is replicated in the circuit the requisite number of times

necessary for the iteration accuracy desired. It allows ease of circuit building in both S-
61

Edit and layout, because it needs to be designed only once and can then be used many

times.

2. Schematic

Figure 43 shows the CORDIC General Vector Level circuit. It differs from one

stage of Figure 18 in the addition of output pipeline registers. There are three 16-bit

A/S’s: two to execute Table 4 mathematics on Q and I, and one to accumulate the phase

Z. The MSB (sign) bit of the input Q data and its complement are routed as the ‘M’

control signal to the A/S’s. Constant phase values from Table 24 for the given iteration

are hardwired at location ‘A’. Whenever Q is positive, subtraction occurs and conversely

addition when Q is a negative number. I data is added to shifted values of Q at ‘B’, and

Q data is added to shifted values of I at ‘C’. Multiple levels of the CORDIC General

Vector Level are cascaded vertically to implement multiple Vectoring iterations.

62

Figure 43. CORDIC General Vector Level Schematic.

63

3. Example: CORDIC Vector Level 14.03

A programmed CORDIC Vector level implementing L=2 is shown as Figure 44:

Figure 44. CORDIC Level 14.03 Symbol (left) and Circuit (right).

64

The phase value of R in degrees for this stage is 14.03624° and the number of

hardwire shifts is two, corresponding to a K value of 2L = 22 = 4. In accordance with

Table 24, the phase value R programmed is 14.03125°. This is represented as:

• Logic Value: LLLL LHHH L . LLL LHLL

• In Binary: 0000 0111 0 . 000 0100

where ‘L’ stands for “low” and is a logic ‘0’ (zero volts), and ‘H’ stands for “high” and is

a logic ‘1’ (1.8 volts). The location ‘A’ from Figure 44 is zoomed and shown as Figure

45 and details this constant phase value programming. The reader can verify the pull-ups

and pull-downs to Vdd and Ground.

Figure 45. Zoomed In Phase Input – Phase Loading of 14.03125°.

Data is shifted right in order to divide by powers of two. As Q data may be a

positive or negative value, and the shift must be an arithmetic right shift with sign

extension. As there are two shifts for this iteration stage, the values of Q1 and Q0 are

dropped and the MSB Q15 is replicated twice to implement sign extension. Figure 46 is

a zoomed picture of Figure 44 location ‘B’. The Q15 line from the previous iteration

65

level is buffered prior to the input of the 16-bit A/S because this is also the ‘M’ control

line for the other A/S’s, and hence, has a large fan out (capacitive loading).

Figure 46. Zoomed in Q Hardwire Shifts.

Figure 47 is a zoomed view of location ‘C’ from Figure 44 showing the hardwire-

shifted I data. Again, there are two shifts for this iteration stage. Hence, the values of I1

and I0 are dropped and ground is shifted in because higher order I data is always positive.

The MSB shifted in after integer bit nine is always a logical zero.

66

Figure 47. Zoomed in I Hardwire Shifts.

H. 9-BIT TO 5-BIT NUMBER CONVERSION

1. Overview

The accumulated phase data, which is a 16-bit two’s complement fixed radix

positional number system, requires conversion to a five-bit unsigned integer for use in the

DIS. The phase resolution is 11.25°, a fractional number and, therefore, the possible

phase value ranges of a 360° circle were rounded and arranged in bins. Table 25 shows

the 32-phase bin organization:

67

Degree
Range

5-Bit
Phase
Value

Decimal

Degree
Range

5-Bit
Phase
Value

Decimal

Degree
Range

5-Bit
Phase
Value

Decimal

Degree
Range

5-Bit
Phase
Value

Decimal
0-11 0 91-101 8 181-191 16 271-281 24
12-23 1 102-112 9 192-203 17 282-93 25
24-34 2 113-124 10 204-214 18 294-304 26
35-45 3 125-135 11 215-225 19 305-315 27
46-56 4 136-146 12 226-236 20 316-326 28
57-67 5 147-158 13 237-248 21 327-338 29
68-78 6 159-169 14 249-259 22 339-349 30
79-90 7 170-180 15 260-270 23 350-359 31

Table 25. Phase Groupings.

Using the nine integer Z phase bits produced by the last CORDIC iteration stage, a 9 to 5

Bit Phase Conversion truth table was generated and is detailed in Appendix C. The table

was then examined to determine the SOP minterms where each of the output five bits, F4

through F0, were a logic value of ‘1’. Table 26 shows this collection of minterms

necessary to generate each F-bit result.

F4 F3 F2 F1 F0
1-10 411-421 456-466 478-488 489-500
11-21 400-410 445-455 467-477 467-477
22-33 388-399 434-444 434-444 445-455
34-44 377-387 422-432 422-432 422-433
45-55 366-376 366-376 388-399 400-410
56-66 354-365 354-365 377-387 377-387
67-78 343-353 343-353 343-353 354-365
79-89 332-342 332-342 332-342 332-342
90-100 1-10 1-10 1-10 1-10
101-111 11-21 11-21 11-21 22-33
112-123 22-33 22-33 45-55 45-55
124-134 34-44 34-44 56-66 67-78
135-145 45-55 90-100 90-100 90-100
146-156 56-66 101-111 101-111 112-123
157-168 67-78 112-123 135-145 135-145
169-179 79-89 124-134 146-156 157-168

Table 26. Minterms Necessary to Generate the 9-to-5 Conversion Circuit.

68

 Using the collection of minterms shown above, a MATLAB coded Quine-

McClusky algorithm was used to determine the five SOP logical functions. The resulting

logic terms to implement the SOP functions are shown in Table 27 as R4 through R0.

Function R0 required the logical OR’ing of 53 different AND products and is a very large

array, whereas R4 is very easy to generate, requiring only 11 product terms.

69

Table 27. Quine-McClusky Results of 9-to-5 Bit Logic Minimization.

70

Using only the nine integer bits from the last CORDIC Vector level produces a

truncation error. Consider a 16-bit Z phase data produced at the last iteration of the

CORDIC of 1 0110 0111.0010 000. Truncating this number by only using the most

significant nine bits, yields 1 0110 0111. This new number in two’s complement is:

Number: 1 0110 0111 = ?

Ones Complement: 0 1001 1000 = 152

Add One to the LSB: + 1

Two’s Complement: 0 1001 1001 = 153

Compare the non-truncated number using all 16-bits of precision:

Number: 1 0110 0111 . 0010 000 = ?

Ones Complement: 0 1001 1000 . 1101 111 = 152.8671875

Add One to the LSB: + 1

Two’s Complement: 0 1001 1000 . 1110 000 = 152.875

Thus, the hardware is actually passing the number −153 into the 9 to 5 Conversion, when

it should be 0 1001 1000 = −152. This is because the decimal bits are ignored in order to

use the minimum number of terms in the Quine-McClusky algorithm (nine vs. sixteen

bits). Ignoring the decimal bits, in essence, rounds towards the next more negative

number. To correct this truncation error, the hardware adds one to the Z data if the

number is negative and has any decimal bit. Thus, −153 + 1 = −152, is the correct data to

use. If the number does not have any fractional bits, then, no truncation error occurs and

no extra addition of one is necessary:

Number: 1 0110 0111 . 0000 00 = ?

Ones Complement: 0 1001 1000 . 1111 11 = 152

Add One to the LSB: + 1

Two’s Complement 0 1001 1001 . 0000 00 = 153

i.e., the hardware should in this case produce −153.

71

2. Schematics

 The completed 9-to-5 Bit Conversion circuit is shown in Figure 48 and as a

sample hardware implementation, the logic function implementation of R0 from Table 27

is shown in Figure 49.

~ZFrac0
~ZFrac1
~ZFrac2
~ZFrac3
~ZFrac4
~ZFrac5
~ZFrac6

Z4
OU
T

Z0
OU
T

Z1
OU
T

Z2
OU
T

Z3
OU
T

~Z
0

~Z
1

~Z
2

~Z
3

~Z
4

~Z
5

~Z
6

~Z
7

~Z
8

Z8
Z7 Z6 Z5 Z4 Z3 Z2 Z1 Z0

Load
CLK

Load
CLK

Vdd

R4R3R2R1R0

CLK

D0 D1 D2 D3 D4

LD
Q0 Q1 Q2 Q3 Q4

RCA DMSFF5

9-Bit MS D Register Flip FlopCLK
D0D1D2D3D4D5D6D7D8

LD
Q0Q1Q2Q3Q4Q5Q6Q7Q8 ~Q
0

~Q
1

~Q
2

~Q
3

~Q
4

~Q
5

~Q
6

~Q
7

~Q
8

9 bit Adder

A0A1A2A3A4A5A6A7A8B0B1B2B3B4B5B6B7B8

C0

S0S1S2S3S4S5S6S7S8

~A
0

~A
1

~A
2

~A
3

~A
4

~A
5

~A
6

~A
7

~A
8

~B
0

~B
1

~B
2

~B
3

~B
4

~B
5

~B
6

~B
7

~B
8

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

13
92
7

Figure 48. RCA_9to5_Conversion Circuit.

72

The top portion of the Figure 49 schematic detects a negative number with at least

one fractional bit being a logic ‘1’ and correspondingly adds one. The output of the nine-

bit adder must drive 138 logic gates to implement the five logic functions of the phase

conversion. Thus, the adder outputs after a pipeline register are buffered through

RCA_13927Buffer circuits. Finally, the five conversion bits are pipelined before their

processing in the DIS.

73

Figure 49. R0 Function Hardware Implementation.

74

I. COMPLETED CIRCUIT

1. Completed Circuit

Figure 50 shows the completed circuit, which takes as inputs: eight-bit Q and I

data, a Load signal, a Clock signal, and Phase Signal Valid In. It produces a five-bit

phase result, Z, and a Phase Signal Valid Out.

75

Figure 50. Completed Circuit.

76

2. Circuit Verification and Parameters

Table 28 details T-SPICE determined electrical circuit parameters:

Symbol Parameter Value Units

Vdd Power Supply Voltage 1.8 V

τ Clock Period 1.4285714 ns

f Clock frequency 700 MHz

PAve Average Power 0.0567 W

PInst Maximum Instantaneous Power 0.3141 W

LP Minimum Sized PFET Length 180 nm

WP Minimum Sized PFET Width 450 nm

LN Minimum Sized NFET Length 180 nm

WN Minimum Sized NFET Width 450 nm

βN N-FET Transistor Gain Factor 435.0 µΑ/ V2

βp P_FET Transistor Gain Factor 146.5 µΑ/ V2

s Clock Skew 0.41 ns

βN /βp N-to-P Gain Factor Ratio 2.969

M_CMOSP P-Fet count 24236

M_CMOSN N-Fet count 24236

Nodes Total Nodes 20442

M_Elm Number of elements 48472

Table 28. Circuit Parameters.

Figure 51 shows the current draw on the power supply for a string of different test

vectors. The average and peak current were used in the calculation of the above power

parameters. The Clock and Load signal before and after the RCA_13927Buffer shows

sample skew measurement, s, in Figure 52.

77

Figure 51. Power Supply Current Draw.

 0.0 0.5 1.0 1.5

Time (ns)

 0.0

 0.5

 1.0

 1.5

V
ol

ta
ge

 (V
)

v(CLK)
1.80

0.9
0.90

x1 = x2 = dx = 0.25n 0.66n 0.41n

RCA_THESIS

v(clknode)
0.90

Figure 52. Clock and Load Skew.

78

3. Verification

Verification of the circuit was done with two different methods:

• Functional (logical) Testing and

• Timing Testing of selected test vectors.

The functional testing was done by extracting the complete S-Edit circuit as a

VHDL file. The Aldec VHDL program was used to test all 65,536 possible input

combinations of Q and I. A 0.5 ns clock was used in the Aldec test to speed up

simulation completion time as only logical testing was important using this software.

Figure 53 shows the previous example use of Q = 4, I = −8. The circuit produces the

correct output value of 13, 16-clock pulses later.

T-SPICE was used for all important circuit electrical and timing parameters, but

only for small sets of test vectors, because of the excessively long simulation run times.

Figure 54 shows T-SPICE timing simulation using the same Q and I inputs and the

corresponding correct output results, plotted with annotations using the W-Edit program.

The Valid Signal Out goes high 16 clock periods after both inputs change from zero,

indicating that the output phase number (in this case 13) is valid, and is correct. T-SPICE

timing simulations show that the circuit runs properly at a 700 MHz clock frequency,

producing results after a latency of 16-pipeline clock periods.

79

Figure 53. VHDL Functional Verification.

80

Figure 54. T-SPICE Timing Verification.

81

THIS PAGE INTENTIONALLY LEFT BLANK

82

IV. CONCLUSIONS AND RECOMMENDATIONS

A. GENERAL

This thesis demonstrated the hierarchical research, design, VLSI circuit

implementation, and testing of a high performance ASIC that extracts the phase of a

complex signal. The circuit meets all the design goals:

• A minimum transistor count implementation of only 48,472 FETs,

• Ability to operate at 700 MHz clock speed,

• Low average power use of 56.7mW, and

• Accurate production of a five-bit phase value for use in the DIS by

implementing the arctangent function using only six CORDIC vector

iterations.

The amplitude-to-phase converter is a robust design that produces a five-bit phase result

of eight-bit input Q and I data on each rising clock edge after a 16-clock pulse latency

delay. Once the pipeline is loaded, phase results are produced on each clock edge. The

circuit can easily and quickly be scaled for more CORDIC accuracy by the inclusion of

additional General Vector Levels and updating the Z constant phase value loaded and the

hardwire shift programming.

Although primarily designed for ASIC implementation, the circuit can also be

readily implemented as a Field Programmable Gate Array (FPGA).

B. LESSONS LEARNED

 A complicated circuit should be first designed and tested using a high-level

software package such as VHDL prior to the S-Edit design. VHDL allows very fast

functional testing of all possible circuit inputs and, therefore, facilitates circuit

debugging. Test vectors cannot be used to guarantee proper circuit operation under all

logical conditions. T-SPICE simulations, though, are an absolute necessity for timing

and electrical validation. Simple modular piece-wise designs lead to error-free circuit

operation and ease of future upgrading.

83

C. RECOMMENDATIONS FOR FUTURE WORK

 Recommendations for future circuit optimization and work include:

• Removing the negative 128 circuit fix in the RCA_CORDIC_ROTATION

level by increasing the size of the two’s complement circuit by one-bit

• Investigating the addition and subtraction of a constant Z phase of only five-

bit numbers. Rather than carrying a 16-bit two’s complement fixed-point

radix number to accumulate phase values, preliminary work suggests that a

five-bit phase value may be sufficient. This would allow the reduction of the

16-bit A/S at each vector stage to be decreased to a five-bit A/S, and the

complete elimination of the 9 to 5 Bit Conversion sub-circuit

• Layout of the working circuit must be finished in L-Edit to facilitate circuit

fabrication.

84

APPENDIX A. MATLAB CODE

A. OVERVIEW

This appendix details the author’s MATLAB code. The Quine-McClusky code

used for the minimization in B. 1. below is detailed in reference [13].

B. QUINE-MCCLUSKY MINIMIZATION

1. File – Main.m

This program calls the Quine-McClusky minimization routine to compute the

minimal Sum-of-Products logic function for each of the five conversion output phase

bits. The range of minterms from Appendix X are listed as “x#” correspond to the

appropriate phases of each bin. The minterms which are never produced are “don’t care”

terms and are listed as “dc”. Next, the appropriate five functions, f0 through f4, are listed

as a matrix with their appropriate range of bin minterms. The routine is run five times,

once for each function bit.

%---

%create matrix of minterms

x0=[0 511 510 509 508 507 506 505 504 503 502 501];
x1=489:500; x2=478:488; x3=467:477; x4=456:466; x5=445:455; x6=434:444;
x7=422:433; x8=411:421; x9=400:410; x10=388:399; x11=377:387; x12=366:376;
x13=354:365; x14=343:353; x15=332:342; x16=321:331; x17=309:320; x18=298:308;
x19=287:297; x20=276:286; x21=264:275; x22=253:263; x23=242:252; x24=231:241;
x25=219:230; x26=208:218; x27=197:207; x28=186:196; x29=174:185; x30=163:173;
x31=153:162;

%create don't care matrix, values of minterms that will never get
dc=1:152;

f0=[x1 x3 x5 x7 x9 x11 x13 x15 x17 x19 x21 x23 x25 x27 x29 x31 dc];
f1=[x31 x30 x27 x26 x23 x22 x19 x18 x15 x14 x11 x10 x7 x6 x3 x2 dc];
f2=[x31 x30 x29 x28 x23 x22 x21 x20 x15 x14 x13 x12 x7 x6 x5 x4 dc];
f3=[x31 x30 x29 x28 x27 x26 x25 x24 x15 x14 x13 x12 x11 x10 x9 x8 dc];
f4=[x31 x30 x29 x28 x27 x26 x25 x24 x23 x22 x21 x20 x19 x18 x17 x16 dc];

m0=sort(f4);

85

%call quine-mcclusky minimization
r0=quine(m0,5)

C. OTHER CODES

1. File – NoiseMargins.m

The following program calculates the slope of the voltage curve, and locates the

two places where the derivate is minus one. The location of these two points contains the

voltage data value at that index of the MATLAB data, and is used in the noise margin

calculations.

load INVERTER.M;
Vin=INVERTER(:,1);
Vout=INVERTER(:,2);
Vin=Vin';
Vout=Vout';
Y=diff(Vout);
X=diff(Vout);
Z=Y./X;
Z=Z';

2. File – Arctangent.m

The following program is used to generate the tan-1(Q/I) by either the MATLAB

predefined “atan2” function, or by the CORDIC method. The user may specify either

method by setting the perfect variable, and if the CORDIC method is used, the number of

iterations to perform.

function z=arctangent(I,Q,iterations,perfect)

% returns the phase either using cordic or angle(z) depending on perfect flag
% perfect = 0 use cordic approximation
% perfect = ~0 use built in MATLAB atan2 function
% iterations - affects accuracy of the cordic algorithm, max 8!
% sample result and use:
% >> arctangent(1,1,8,0)
%
%ans =
%
% 4

IP = I; %temp variables used for angle calculation of ArcTan below
QP = Q;

86

mp_cordic_table=[1,.5,.25,.125,.0625,.03125,.015625,.007813,3.90625e-3,1.953125e-3];
mp_cordic_table_phase=[.7853981634,.4636030826,.2449597967,.1243547092,.062381
8854,.0312250311,.0156125156,.0077721693,.0038860847];

if perfect == 0
%rotate by an initial +/- 90 degrees
if (I < 0)
 tmp_I = I;
 if (Q > 0)
 I = Q; % subtract 90 degrees
 Q = -tmp_I;
 acc_phase_rads = -pi/2;
 else
 I = -Q; % add 90 degrees
 Q = tmp_I;
 acc_phase_rads = pi/2;
 end
 else
 acc_phase_rads = 0.0;
end

% rotate using "1 + jK" factors
for (L = 0:iterations)
K = mp_cordic_table(L+1);
 phase_rads = mp_cordic_table_phase(L+1);
 tmp_I = I;
 if (Q >= 0.0) % phase is positive: do negative roation
 I = I + Q * K;
 Q = Q - tmp_I * K;
 acc_phase_rads = acc_phase_rads - phase_rads;
 else % phase is negative: do positive rotation
 Q = Q + tmp_I * K;
 acc_phase_rads = acc_phase_rads + phase_rads;
 end
 L=L+1;
end

p_phase_degs = -1*acc_phase_rads*180/pi; %angle is the negative, convert to
degree
phase_quantized = round((p_phase_degs)/11.25); %quantize to 5 bits
if phase_quantized <0 %if negative angle, make offset binary
 phase_quantized = phase_quantized + 32;
end

else

87

%******************** "Perfect" Calculation *************************
z=IP+i*QP;
phase_quantized = (round(atan2(Q,I)*180/(pi*11.25)));
if phase_quantized <0 %if negative angle, make offset binary
 phase_quantized = phase_quantized + 32;
end
end
z=phase_quantized;
end

3. File – Polynomial_Approx.m

The following program was used to plot Figure 8, and via the MATLAB “polyfit”

function, determines a polynomial fit to the arctangent function.

clear; clc;

I=[-15:-1 0:15];
Q=[-15:-1 0:15];
h=[];

for i = 1:31
 for j=1:31
 if Q(i) == 0
 h(i,j) = inf;
 end

 if (Q(i) == 0)&(I(j)==0)
 h(i,j) = 0;
 end

 if Q(i) ~= 0
 h(i,j)=I(j)/Q(i);
 end
 end
end
%
% figure(1)
% y=floor(atan(h)*180/pi);

% figure(2)
x=-70:70;
a=(atan(x)*180/pi);
plot(x,a)
grid on
axis ([-15,15,-90,90])

88

x=(-70:1:70)';
y=atan(x)*180/pi;
z=polyfit(x,y,15)
f=polyval(z,x);
plot(x,y,'red',x,f,'blue')
axis ([-80,80,-110,110])
legend('atan(x)','15th Degree Polynomial')
title('Polynomial atan Approximation')
ylabel('Degrees'),xlabel('x'),grid on

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

APPENDIX B. MOSIS TSMC 0.18 MICRON FET PARAMETERS
[14]

A. PROCESS PARAMETERS FILE – TSMC018EPI.MD
* MOSIS PARAMETRIC TEST RESULTS
* RUN: T15J (LO_EPI) VENDOR: TSMC
* TECHNOLOGY: SCN018 FEATURE SIZE: 0.18
microns
* T15J SPICE BSIM3 VERSION 3.1 PARAMETERS
* SPICE 3f5 Level 8, Star-HSPICE Level 49, UTMOST Level 8
* DATE: Jul 16/01
* LOT: T15J WAF: 5001
* Temperature_parameters=Default

.MODEL CMOSN NMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 4.2E-9
+XJ = 1E-7 NCH = 2.3549E17 VTH0 = 0.3593426
+K1 = 0.584235 K2 = 1.808939E-3 K3 = 1E-3
+K3B = 15.9142604 W0 = 6.767602E-6 NLX = 1.645593E-7
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 1.3712712 DVT1 = 0.4653446 DVT2 = -0.0430942
+U0 = 319.668247 UA = -2.46952E-10 UB = 6.893182E-
19
+UC = -4.23662E-11 VS.AT = 9.798045E4 A0 = 1.4231374
+AGS = 0.1896218 B0 = -1.429899E-8 B1 = -1E-7
+KETA = 0.0270338 A1 = 5.615435E-4 A2 = 0.8500947
+RDSW = 133.2722527 PRWG = 0.5 PRWB = -0.2
+WR = 1 WINT = 0 LINT = 9.682918E-9
+XL = -2E-8 XW = -1E-8 DWG = -7.78854E-9
+DWB = -1.003184E-8 VOFF = -0.0652789 NFACTOR = 2.5
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.1006785 ETAB = -0.0446167
+DSUB = 0.8210518 PCLM = 0.7765536 PDIBLC1 = 0.1854406
+PDIBLC2 = 9.865273E-3 PDIBLCB = -0.0540508 DROUT = 0.8266372
+PSCBE1 = 7.672864E10 PSCBE2 = 2.036021E-8 PVAG = 0
+DELTA = 0.01 RSH = 6.8 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 7.23E-10 CGSO = 7.23E-10 CGBO = 1E-12
+CJ = 9.89627E-4 PB = 0.73534 MJ = 0.3594267
+CJSW = 2.46165E-10 PBSW = 0.7840557 MJSW = 0.1075765
+CJSWG = 3.3E-10 PBSWG = 0.7840557 MJSWG = 0.1075765
+CF = 0 PVTH0 = -3.498648E-5 PRDSW = -2.9489679
+PK2 = -1.251474E-3 WKETA = 1.928603E-3 LKETA = -8.378587E-
3
+PU0 = 31.1137209 PUA = 1.155019E-10 PUB = 0
+PVS.AT = 1.542088E3 PETA0 = -1.003159E-4 PKETA = 5.130701E-
3)

91

.MODEL CMOSP PMOS (LEVEL = 49
+VERSION = 3.1 TNOM = 27 TOX = 4.2E-9
+XJ = 1E-7 NCH = 4.1589E17 VTH0 = -0.4139661
+K1 = 0.5684869 K2 = 0.0351909 K3 = 0
+K3B = 10.6033883 W0 = 1E-6 NLX = 9.038631E-8
+DVT0W = 0 DVT1W = 0 DVT2W = 0
+DVT0 = 0.5244177 DVT1 = 0.2901433 DVT2 = 0.1
+U0 = 124.8628741 UA = 1.792035E-9 UB = 1E-21
+UC = -1E-10 VS.AT = 1.551654E5 A0 = 1.5201757
+AGS = 0.3427925 B0 = 1.666904E-6 B1 = 5E-6
+KETA = 0.0212022 A1 = 0.028014 A2 = 1
+RDSW = 304.979313 PRWG = 0.5 PRWB = -0.5
+WR = 1 WINT = 0 LINT = 2.053267E-8
+XL = -2E-8 XW = -1E-8 DWG = -3.938518E-
8
+DWB = 5.971841E-9 VOFF = -0.100662 NFACTOR = 1.9470845
+CIT = 0 CDSC = 2.4E-4 CDSCD = 0
+CDSCB = 0 ETA0 = 0.2098261 ETAB = -0.2406335
+DSUB = 1.2865683 PCLM = 2.544679 PDIBLC1 = 6.316635E-3
+PDIBLC2 = 0.0508323 PDIBLCB = -9.99311E-4 DROUT = 0
+PSCBE1 = 1.733444E9 PSCBE2 = 5.00159E-10 PVAG = 15
+DELTA = 0.01 RSH = 7.6 MOBMOD = 1
+PRT = 0 UTE = -1.5 KT1 = -0.11
+KT1L = 0 KT2 = 0.022 UA1 = 4.31E-9
+UB1 = -7.61E-18 UC1 = -5.6E-11 AT = 3.3E4
+WL = 0 WLN = 1 WW = 0
+WWN = 1 WWL = 0 LL = 0
+LLN = 1 LW = 0 LWN = 1
+LWL = 0 CAPMOD = 2 XPART = 0.5
+CGDO = 6.92E-10 CGSO = 6.92E-10 CGBO = 1E-12
+CJ = 1.204978E-3 PB = 0.8428469 MJ = 0.4043249
+CJSW = 2.088728E-10 PBSW = 0.5832884 MJSW = 0.3016152
+CJSWG = 4.22E-10 PBSWG = 0.5832884 MJSWG = 0.3016152
+CF = 0 PVTH0 = 2.844904E-3 PRDSW = 6.5073202
+PK2 = 2.629498E-3 WKETA = 2.438155E-3 LKETA = -4.928775E-
3
+PU0 = -2.2589171 PUA = -7.99545E-11 PUB = 2.472552E-
22
+PVS.AT = -50 PETA0 = 1E-4 PKETA = 2.018007E-
3)

92

APPENDIX C. 9-TO-5 BIT CONVERSION – MINTERM
CALCULATION

A. OVERVIEW

Using Excel, all Z phases were listed in Table 29, along with their corresponding

negative value, the Actual Phase, as a reference (recall the CORDIC give the negative of

the actual phase). The Z Decimal was then converted to binary which represents its

minterm. For example:

−4° = 1 1111 1100 in two’s complement = 508 as an unsigned binary number.

The data Z8 through Z0 show this minterm representation in binary. Phases, and

thus minterms, were then grouped IAW Table 26. and the five bit corresponding number,

F4 through F0 was entered according to the Actual Phase value. For the case of the Z

Decimal value of –4°, actual phase of 4° this would correspond to a five-bit phase

number of 0 as it falls in the range of 0° to 11°. Thus, the table automatically converts

the Z Decimal phase to its complement number via the method it is laid out and encoded.

By comparing when a particular F bit was one, the sum of products minterms were then

determined and entered into Table 27. As well, the “don’t care” terms were determined

by examining which minterms were never used because they represent a phase value

larger than 360 degrees, which by definition, is impossible. The “don’t cares” were thus

determined to be the minterm values between 1 and 152.

93

94

95

96

97

98

99

Table 29. 9-to-5 Bit Phase Conversion Truth Table.

100

APPENDIX D. PROCESS TECHNOLOGY

A. OVERVIEW

The following is a reproduction from the MOSIS website and provides a general

description of the fabrication processes and rules [15].

B. MOSIS PROCESSES

1. Overview

This CMOS process has 6 metal layers and 1 poly layer. The process is for
1.8 volt applications. A thick oxide layer can be used for 3.3 volt transistors.
MOSIS multiproject runs support designs for the 0.18 micron CMOS logic
process (CL018) using epitaxial wafers, and mixed signal/RF process (CM018)
using non-epitaxial wafers.

Silicide block, thick gate oxide (3.3 V), ESD 3.3 V, NT_N, deep n_well,
ThickTopMetal (inductor), and MiM options are available on multiproject runs.
The Thick_Top_Metal option must be explicitly specified with each design
submission that requires it. MiM (Cap_Top_Metal, also known as Metal 5 Prime,
to Metal 5) provides a capacitance of 1 fF/µm². Designs for this process require
Metal 6 in the pad stack.

MOSIS Scalable CMOS (SCMOS) is a set of logical layers together with

their design rules, which provide a nearly process- and metric-independent
interface to all CMOS fabrication processes available through MOSIS. The
designer works in the abstract SCMOS layers and metric unit ("lambda"). He then
specifies which process and feature size he wants the design to be fabricated in.
MOSIS maps the SCMOS design onto that process, generating the true logical
layers and absolute dimensions required by the process vendor. The designer can
often submit exactly the same design, but to a different fabrication process or
feature size. MOSIS alone handles the new mapping.

By contrast, using a specific vendor's layers and design rules ("vendor
rules") will yield a design which is less likely to be directly portable to any other
process or feature size. Vendor rules usually need more logical layers than the
SCMOS rules, even though both fabricate onto exactly the same process. More
layers means more design rules, a higher learning curve for that one process, more
interactions to worry about, more complex design support required, and longer
layout development times. Porting the design to a new process will be
burdensome.

101

SCMOS designers access process-specific features by using MOSIS-
provided abstract layers which implement those features. For example, a designer
wishing to use second-poly would use the MOSIS-provided second-poly abstract
layer, but must then submit to a process providing for two polysilicon layers. In
the same way, designers may access multiple metals, or different types of analog
structures such as capacitors and resistors, without having to learn any new set of
design rules for the more standard layers such as metal-1.

Vendor rules may be more appropriate when seeking maximal use of
silicon area, more direct control over analog circuit parameters, or for very large
production runs, where the added investment in development time and loss of
design portability is clearly justified. However the advantages of using SCMOS
rules may far outweigh such concerns, and should be considered.

2. SCMOS Design Rules

In the SCMOS rules, circuit geometries are specified in the Mead and
Conway's lambda based methodology. The unit of measurement, lambda, can
easily be scaled to different fabrication processes as semiconductor technology
advances.

Each design has a technology-code associated with the layout file. Each
technology-code may have one or more associated options added for the purpose
of specifying either (a) special features for the target process or (b) the presence
of novel devices in the design. At the time of this revision, MOSIS is offering
CMOS processes with feature sizes from 1.5 micron to 0.18 micron.

3. Standard SCMOS

The standard CMOS technology accessed by MOSIS is a single
polysilicon, double metal, bulk CMOS process with enhancement-mode n-
MOSFET and p-MOSFET devices.

4. Well Type

The Scalable CMOS (SC) rules support both n-well and p-well processes.
MOSIS recognizes three base technology codes that let the designer specify the
well type of the process selected. SCN specifies an n-well process, SCP specifies
a p-well process, and SCE indicates that the designer is willing to utilize a process
of either n-well or p-well.

An SCE design must provide both a drawn n-well and a drawn p-well;

MOSIS will use the well that corresponds to the selected process and ignore the
other well. As a convenience, SCN and SCP designs may also include the other

102

well (p-well in an SCN design or n-well in an SCP design), but it will always be
ignored.

MOSIS currently offers only n-well processes or foundry-designated twin-
well processes that from the design and process flow standpoints are equivalent to
n-well processes. These twin-well processes may have options (deep n-well) that
provide independently isolated p-wells. For all of these processes at this time use
the technology code SCN. SCP is currently not supported, and SCE is treated
exactly as SCN.

SCN6M_DEEP: Scalable CMOS N-well, 6 metal, 1 poly, thick oxide

option, and supports silicide block. MiM (Cap_Top_Metal, also known as Metal 5
Prime, to Metal 5) capacitors are available. Uses revised layout rules for better fit
to sub-micron processes.

103

THIS PAGE INTENTIONALLY LEFT BLANK

104

APPENDIX E. TANNER TOOLS DESCRIPTION

A. OVERVIEW

The following is a reproduction from the Tanner website and provides a general

description of the suite of Tanner Tools Pro [3].

B. TANNER TOOLS

1. Simulation Tools

Analog Circuit Simulator

T-Spice Pro™ offers fast and accurate simulation for analog and mixed
analog/digital circuits. Full chip designs where more than 300,000 elements can
be simulated. T-Spice includes standard SPICE models like the latest BSIM3
models, and the advanced Maher/Mead model which scales to submicron lengths
and is continuous from subthreshold to above-threshold operation.

Waveform Viewer

W-Edit streamlines and customizes graphical data representation using
data files without modification from T-Spice and GateSim simulation runs.
2. Frontend and Netlist

Layout vs. Schematic

LVS. accurately and efficiently compares two SPICE netlists. Element and
node mismatches are quickly traced back to their origins and unresolvable nodes
and devices are pinpointed. When trail matching is turned on, LVS. attempts to
resolve ambiguous elements and nodes by assigning matches between a pair of
elements or nodes. LVS. can use topological information, parametric values, or
geometric values to compare netlists with a specified tolerance. The ability to
specify pre- and post-iteration matching or parameter matching speeds up the
comparison process. Other time saving features include the ability to queue and
run verification in batch mode.
3. Mask-Level Tools

Layout Editor

105

L-Edit™ is a full-featured, high-performance, interactive graphical mask
layout editor. L-Edit generates layouts quickly and easily, supports fully
hierarchical designs, and allows an unlimited number of layers, cells, and levels
of hierarchy. It includes all major drawing primitives and supports 90-degree, 45-
degree, and all-angle drawing modes. L-Edit offers advanced editing features such
as edit-in-place, slice/merge, group/ungroup, window stretch editing, and reads

and writes GDS II and CIF file formats. L-Edit also includes a unique cross-
section viewer that allows you to simulate and preview grow/deposit,
implant/diffuse, and etch steps.

Design Rule Checking

L-Edit/DRC™ is a user-configurable design rule checker that can verify a
full chip or just a specific region. Errors can be collated in a text file or reported
on screen using error objects or error labels representing a description of the
violated rule. Design rule setup uses lambda units that allow for easy rescaling for
new technologies. The domain decomposition algorithm enables rapid checking
of large designs. Easy portability across platforms allows you to move large DRC
runs to higher performance or multitasking hardware.

Device Extraction

L-Edit/Extract™ creates SPICE-compatible circuit netlists from L-Edit
layouts. It can recognize active and passive devices, subcircuits, and most
common device parameters, including resistance, capacitance, device length,
width, and extension rules. Full chip and region-only DRC is supported. DRC
offers Error Browser and Object Browser functions for quickly and easily cycling
through rule-checking errors, and supports 45-degree and 90-degree geometry.

106

LIST OF REFERENCES

1. Fouts, D. J., Pace, P.E., Karow, C., Ekestorm, S., “A Single-Chip False Target
Radar Image Generator for Countering Wideband Imaging Radars”, IEEE
Journal on Solid State Circuits, Vol. 37, No. 6, June 2002.

2. Pace, P. E., Fouts, D. J., Karow, C., Ekestorm, S., “An All-Digital Image
Synthesizer for Countering High-Resolution Imaging Radars”, Naval
Postgraduate School Technical Report, NPS-EC-00-005, February 24, 2000.

3. Tanner EDA Products,
[http://www.tanner.com/eda/products/tannertoolspro/default.htm]

4. Finney, R. L., and Thomas, G. B., Calculus, 2nd Ed., Addison-Wesley Publishing
Company, Inc. 1994.

5. Brown, J. W., and Churchill, R. V., Complex Variables and Applications, 6th Ed.,
McGraw-Hill, Inc. 1996.

6. Wakerly, F. John, Digital Design: Principles and Practice, 3rd Ed., updated,
Prentice-Hall, Inc., 2001.

7. Mano, M. Morris, Digital Design, 2nd Ed., Prentice-Hall, Inc., 1991.

8. Griffin, Grant R., CORDIC FAQ,
[http://www.dspguru.com/info/faqs/cordic2.htm]

9. Lindlbauer, Norbert, Implementation of Various CORDIC Architectures, 2000-01-
19, [http://cnmat.cnmat.berkeley.edu/~norbert/cordic/node5.html]

10. MOSIS Process Information for TSMC,
[http://www.mosis.com/Technical/Processes/proc-tsmc-cmos018.html]

11. Weste, Neil H. E., and Eshraghian, Kamran, Principles of CMOS VLSI Design: A
Systems Perspective, 2nd Ed., AT&T, 1993.

12. Guillaume, C. H., Circuit Design and Simulation for a Digital Image Synthesizer
Range Bin Modulator, Monterey, CA, Masters Thesis, Naval Postgraduate
School, March 2002.

13. Amundson, C. A., Design, Implementation, and Testing of a High Performance
Summation Adder for Radar Image Synthesis, Monterey, CA, Masters Thesis,
Naval Postgraduate School, September 2001.

14. MOSIS Parametric Test Results,
 [http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/tsmc-018/t15j_lo_epi-

params.txt]
107

http://www.tanner.com/eda/products/tannertoolspro/default.htm
http://www.dspguru.com/info/faqs/cordic2.htm
http://cnmat.cnmat.berkeley.edu/~norbert/cordic/node5.html
http://www.mosis.com/Technical/Processes/proc-tsmc-cmos018.html
http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/tsmc-018/t15j_lo_epi-params.txt
http://www.mosis.org/cgi-bin/cgiwrap/umosis/swp/params/tsmc-018/t15j_lo_epi-params.txt

15. MOSIS Scalable CMOS (SCMOS) Design Rules, Revision 8.0, Updated March
13, 2002, [http://www.mosis.org/Technical/Designrules/scmos/scmos-main.html]

108

http://www.mosis.org/Technical/Designrules/scmos/scmos-main.html

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library

Naval Postgraduate School
Monterey, California

3. Chairman

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

4. Dr. Douglas Fouts, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

5. Dr. Phillip Pace, Code EC

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

6. Dr. Herschel H. Loomis

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California

7. Dr. David Laister

National Defence Head Quarters
Ottawa, Ontario
Canada

8. Mr. Ubee Fehr

National Defence Head Quarters
Ottawa, Ontario
Canada

9. Dr. John A. Montgomery

Naval Research Laboratory
Washington, D.C.

10. Mr. Alfred A. Di Mattesa

Naval Research Laboratory

109

Washington, D.C.

11. Mr. Gregory P. Hrin

Naval Research Laboratory
Washington, D.C.

12. Mr. Daniel W. Bay

Naval Research Laboratory
Washington, D.C.

13. Dr. Frank Klemm

Naval Research Laboratory
Washington, D.C.

14. Mr. Brian W. Edwards

Naval Research Laboratory
Washington, D.C.

15. Mr. George D. Farmer

Naval Research Laboratory
Washington, D.C.

16. Dr. Preston W. Grounds

Naval Research Laboratory
Washington, D.C.

17. Dr. Peter Craig

Office of Naval Research
Arlington, Virginia

18. Dr. Joseph Lawrence

Office of Naval Research
Arlington, Virginia

19. Mr. James Talley

Office of Naval Research
Arlington, Virginia

110

	I.INTRODUCTION
	A.BACKGROUND OF THE DIGITAL IMAGE SYNTHESIZER
	B.PRINCIPAL CONTRIBUTIONS
	C.ORGANIZATION OF THESIS

	II.INVESTIGATION OF CONVERSION METHODS
	A.TASKS
	1.Aim
	2.Implied Tasks

	B.GENERAL
	1.The Arctangent Function of a Real Number
	2.The Arctangent Function of a Complex Number
	3.Five-Bit Phase Quantization

	C.AMPLITUDE-TO-PHASE CONVERSION METHODS
	1.Calculus
	2.Polynomial Approximation
	3.Look Up Table
	4.Sum-of-Products Logic Block
	5.CORDIC

	D.CORDIC HARDWARE IMPEMENTATION

	III.SCHEMATIC DESIGN OF THE Q/I PHASE CONVERTER
	A.HIERARCHICAL SCHEMATIC DESIGN OVERVIEW
	B.TRANSISTORS
	1.N-FET
	2.P-FET
	3.N/P-FET Current and Voltage – Drain to Source

	C.LOGIC GATES
	1.Inverter
	2.Pass Gates
	3.Buffer
	4.XOR
	5.NAND2

	D.SECONDARY SUB-CIRCUITS
	1.Registers
	2.RCA_PSVCHAIN
	3.RCA_13927Buffer
	4.16-Bit Pipelined Adder/Subtractor

	E.NUMBER FORMATS
	F.CORDIC ROTATION LEVEL
	1.Overview
	2.Rotation Circuit Diagram
	3.Constant Phase Loading
	4.Negative 128 Fix Circuit
	5.Two’s Complement Circuit

	G.CORDIC GENERAL VECTOR LEVEL
	1.Overview
	2.Schematic
	3.Example: CORDIC Vector Level 14.03

	H.9-BIT TO 5-BIT NUMBER CONVERSION
	1.Overview
	2.Schematics

	I.COMPLETED CIRCUIT
	1.Completed Circuit
	2.Circuit Verification and Parameters
	3.Verification

	IV.CONCLUSIONS AND RECOMMENDATIONS
	A.GENERAL
	B.LESSONS LEARNED
	C.RECOMMENDATIONS FOR FUTURE WORK

	APPENDIX A.MATLAB CODE
	A.OVERVIEW
	B.QUINE-MCCLUSKY MINIMIZATION
	1.File – Main.m

	C.OTHER CODES
	1.File – NoiseMargins.m
	2.File – Arctangent.m
	3.File – Polynomial_Approx.m

	APPENDIX B.MOSIS TSMC 0.18 MICRON FET PARAMETERS [14]
	A.PROCESS PARAMETERS FILE – TSMC018EPI.MD

	APPENDIX C.9-TO-5 BIT CONVERSION – MINTERM CALCUL
	A.OVERVIEW

	APPENDIX D.PROCESS TECHNOLOGY
	A.OVERVIEW
	B.MOSIS PROCESSES
	1.Overview
	2.SCMOS Design Rules
	3.Standard SCMOS
	4.Well Type

	APPENDIX E.TANNER TOOLS DESCRIPTION
	A.OVERVIEW
	B.TANNER TOOLS
	1.Simulation Tools
	2.Frontend and Netlist
	3.Mask-Level Tools

	LIST OF REFERENCES
	INITIAL DISTRIBUTION LIST

